This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function into an intersection. (Contributed by NM, 14-Oct-1999) (Proof shortened by Andrew Salmon, 17-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fint.1 | |- B =/= (/) |
|
| Assertion | fint | |- ( F : A --> |^| B <-> A. x e. B F : A --> x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fint.1 | |- B =/= (/) |
|
| 2 | ssint | |- ( ran F C_ |^| B <-> A. x e. B ran F C_ x ) |
|
| 3 | 2 | anbi2i | |- ( ( F Fn A /\ ran F C_ |^| B ) <-> ( F Fn A /\ A. x e. B ran F C_ x ) ) |
| 4 | r19.28zv | |- ( B =/= (/) -> ( A. x e. B ( F Fn A /\ ran F C_ x ) <-> ( F Fn A /\ A. x e. B ran F C_ x ) ) ) |
|
| 5 | 1 4 | ax-mp | |- ( A. x e. B ( F Fn A /\ ran F C_ x ) <-> ( F Fn A /\ A. x e. B ran F C_ x ) ) |
| 6 | 3 5 | bitr4i | |- ( ( F Fn A /\ ran F C_ |^| B ) <-> A. x e. B ( F Fn A /\ ran F C_ x ) ) |
| 7 | df-f | |- ( F : A --> |^| B <-> ( F Fn A /\ ran F C_ |^| B ) ) |
|
| 8 | df-f | |- ( F : A --> x <-> ( F Fn A /\ ran F C_ x ) ) |
|
| 9 | 8 | ralbii | |- ( A. x e. B F : A --> x <-> A. x e. B ( F Fn A /\ ran F C_ x ) ) |
| 10 | 6 7 9 | 3bitr4i | |- ( F : A --> |^| B <-> A. x e. B F : A --> x ) |