This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set of arrows of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcbas.c | |- C = ( CatCat ` U ) |
|
| catcbas.b | |- B = ( Base ` C ) |
||
| catcbas.u | |- ( ph -> U e. V ) |
||
| catchomfval.h | |- H = ( Hom ` C ) |
||
| Assertion | catchomfval | |- ( ph -> H = ( x e. B , y e. B |-> ( x Func y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcbas.c | |- C = ( CatCat ` U ) |
|
| 2 | catcbas.b | |- B = ( Base ` C ) |
|
| 3 | catcbas.u | |- ( ph -> U e. V ) |
|
| 4 | catchomfval.h | |- H = ( Hom ` C ) |
|
| 5 | 1 2 3 | catcbas | |- ( ph -> B = ( U i^i Cat ) ) |
| 6 | eqidd | |- ( ph -> ( x e. B , y e. B |-> ( x Func y ) ) = ( x e. B , y e. B |-> ( x Func y ) ) ) |
|
| 7 | eqidd | |- ( ph -> ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) ) |
|
| 8 | 1 3 5 6 7 | catcval | |- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } ) |
| 9 | 8 | fveq2d | |- ( ph -> ( Hom ` C ) = ( Hom ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } ) ) |
| 10 | 4 9 | eqtrid | |- ( ph -> H = ( Hom ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } ) ) |
| 11 | 2 | fvexi | |- B e. _V |
| 12 | 11 11 | mpoex | |- ( x e. B , y e. B |-> ( x Func y ) ) e. _V |
| 13 | catstr | |- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } Struct <. 1 , ; 1 5 >. |
|
| 14 | homid | |- Hom = Slot ( Hom ` ndx ) |
|
| 15 | snsstp2 | |- { <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x Func y ) ) >. } C_ { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } |
|
| 16 | 13 14 15 | strfv | |- ( ( x e. B , y e. B |-> ( x Func y ) ) e. _V -> ( x e. B , y e. B |-> ( x Func y ) ) = ( Hom ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } ) ) |
| 17 | 12 16 | mp1i | |- ( ph -> ( x e. B , y e. B |-> ( x Func y ) ) = ( Hom ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } ) ) |
| 18 | 10 17 | eqtr4d | |- ( ph -> H = ( x e. B , y e. B |-> ( x Func y ) ) ) |