This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Examples of categories
The category of categories
catcisoi
Metamath Proof Explorer
Description: A functor is an isomorphism of categories only if it is full and
faithful, and is a bijection on the objects. Remark 3.28(2) in Adamek
p. 34. (Contributed by Zhi Wang , 17-Nov-2025)
Ref
Expression
Hypotheses
catcisoi.c
⊢ C = CatCat ⁡ U
catcisoi.r
⊢ R = Base X
catcisoi.s
⊢ S = Base Y
catcisoi.i
⊢ I = Iso ⁡ C
catcisoi.f
⊢ φ → F ∈ X I Y
Assertion
catcisoi
⊢ φ → F ∈ X Full Y ∩ X Faith Y ∧ 1 st ⁡ F : R ⟶ 1-1 onto S
Proof
Step
Hyp
Ref
Expression
1
catcisoi.c
⊢ C = CatCat ⁡ U
2
catcisoi.r
⊢ R = Base X
3
catcisoi.s
⊢ S = Base Y
4
catcisoi.i
⊢ I = Iso ⁡ C
5
catcisoi.f
⊢ φ → F ∈ X I Y
6
eqid
⊢ Base C = Base C
7
4 5 6
isorcl2
⊢ φ → X ∈ Base C ∧ Y ∈ Base C
8
7
simpld
⊢ φ → X ∈ Base C
9
1 6
elbasfv
⊢ X ∈ Base C → U ∈ V
10
8 9
syl
⊢ φ → U ∈ V
11
7
simprd
⊢ φ → Y ∈ Base C
12
1 6 2 3 10 8 11 4
catciso
⊢ φ → F ∈ X I Y ↔ F ∈ X Full Y ∩ X Faith Y ∧ 1 st ⁡ F : R ⟶ 1-1 onto S
13
5 12
mpbid
⊢ φ → F ∈ X Full Y ∩ X Faith Y ∧ 1 st ⁡ F : R ⟶ 1-1 onto S