This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe is closed under the functor set operation. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 13-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wunfunc.1 | |- ( ph -> U e. WUni ) |
|
| wunfunc.2 | |- ( ph -> C e. U ) |
||
| wunfunc.3 | |- ( ph -> D e. U ) |
||
| Assertion | wunfunc | |- ( ph -> ( C Func D ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunfunc.1 | |- ( ph -> U e. WUni ) |
|
| 2 | wunfunc.2 | |- ( ph -> C e. U ) |
|
| 3 | wunfunc.3 | |- ( ph -> D e. U ) |
|
| 4 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 5 | 4 1 3 | wunstr | |- ( ph -> ( Base ` D ) e. U ) |
| 6 | 4 1 2 | wunstr | |- ( ph -> ( Base ` C ) e. U ) |
| 7 | 1 5 6 | wunmap | |- ( ph -> ( ( Base ` D ) ^m ( Base ` C ) ) e. U ) |
| 8 | homid | |- Hom = Slot ( Hom ` ndx ) |
|
| 9 | 8 1 2 | wunstr | |- ( ph -> ( Hom ` C ) e. U ) |
| 10 | 1 9 | wunrn | |- ( ph -> ran ( Hom ` C ) e. U ) |
| 11 | 1 10 | wununi | |- ( ph -> U. ran ( Hom ` C ) e. U ) |
| 12 | 8 1 3 | wunstr | |- ( ph -> ( Hom ` D ) e. U ) |
| 13 | 1 12 | wunrn | |- ( ph -> ran ( Hom ` D ) e. U ) |
| 14 | 1 13 | wununi | |- ( ph -> U. ran ( Hom ` D ) e. U ) |
| 15 | 1 11 14 | wunxp | |- ( ph -> ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) e. U ) |
| 16 | 1 15 | wunpw | |- ( ph -> ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) e. U ) |
| 17 | 1 6 6 | wunxp | |- ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) e. U ) |
| 18 | 1 16 17 | wunmap | |- ( ph -> ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) e. U ) |
| 19 | 1 7 18 | wunxp | |- ( ph -> ( ( ( Base ` D ) ^m ( Base ` C ) ) X. ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) ) e. U ) |
| 20 | relfunc | |- Rel ( C Func D ) |
|
| 21 | 20 | a1i | |- ( ph -> Rel ( C Func D ) ) |
| 22 | df-br | |- ( f ( C Func D ) g <-> <. f , g >. e. ( C Func D ) ) |
|
| 23 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 24 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 25 | simpr | |- ( ( ph /\ f ( C Func D ) g ) -> f ( C Func D ) g ) |
|
| 26 | 23 24 25 | funcf1 | |- ( ( ph /\ f ( C Func D ) g ) -> f : ( Base ` C ) --> ( Base ` D ) ) |
| 27 | fvex | |- ( Base ` D ) e. _V |
|
| 28 | fvex | |- ( Base ` C ) e. _V |
|
| 29 | 27 28 | elmap | |- ( f e. ( ( Base ` D ) ^m ( Base ` C ) ) <-> f : ( Base ` C ) --> ( Base ` D ) ) |
| 30 | 26 29 | sylibr | |- ( ( ph /\ f ( C Func D ) g ) -> f e. ( ( Base ` D ) ^m ( Base ` C ) ) ) |
| 31 | mapsspw | |- ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) C_ ~P ( ( ( Hom ` C ) ` z ) X. ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ) |
|
| 32 | fvssunirn | |- ( ( Hom ` C ) ` z ) C_ U. ran ( Hom ` C ) |
|
| 33 | ovssunirn | |- ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) C_ U. ran ( Hom ` D ) |
|
| 34 | xpss12 | |- ( ( ( ( Hom ` C ) ` z ) C_ U. ran ( Hom ` C ) /\ ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) C_ U. ran ( Hom ` D ) ) -> ( ( ( Hom ` C ) ` z ) X. ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ) C_ ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ) |
|
| 35 | 32 33 34 | mp2an | |- ( ( ( Hom ` C ) ` z ) X. ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ) C_ ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) |
| 36 | 35 | sspwi | |- ~P ( ( ( Hom ` C ) ` z ) X. ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ) C_ ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) |
| 37 | 31 36 | sstri | |- ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) C_ ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) |
| 38 | 37 | rgenw | |- A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) C_ ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) |
| 39 | ss2ixp | |- ( A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) C_ ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) -> X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) C_ X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ) |
|
| 40 | 38 39 | ax-mp | |- X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) C_ X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) |
| 41 | 28 28 | xpex | |- ( ( Base ` C ) X. ( Base ` C ) ) e. _V |
| 42 | fvex | |- ( Hom ` C ) e. _V |
|
| 43 | 42 | rnex | |- ran ( Hom ` C ) e. _V |
| 44 | 43 | uniex | |- U. ran ( Hom ` C ) e. _V |
| 45 | fvex | |- ( Hom ` D ) e. _V |
|
| 46 | 45 | rnex | |- ran ( Hom ` D ) e. _V |
| 47 | 46 | uniex | |- U. ran ( Hom ` D ) e. _V |
| 48 | 44 47 | xpex | |- ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) e. _V |
| 49 | 48 | pwex | |- ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) e. _V |
| 50 | 41 49 | ixpconst | |- X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) = ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 51 | 40 50 | sseqtri | |- X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) C_ ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 52 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 53 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 54 | 23 52 53 25 | funcixp | |- ( ( ph /\ f ( C Func D ) g ) -> g e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) |
| 55 | 51 54 | sselid | |- ( ( ph /\ f ( C Func D ) g ) -> g e. ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 56 | 30 55 | opelxpd | |- ( ( ph /\ f ( C Func D ) g ) -> <. f , g >. e. ( ( ( Base ` D ) ^m ( Base ` C ) ) X. ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) ) ) |
| 57 | 56 | ex | |- ( ph -> ( f ( C Func D ) g -> <. f , g >. e. ( ( ( Base ` D ) ^m ( Base ` C ) ) X. ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) ) ) ) |
| 58 | 22 57 | biimtrrid | |- ( ph -> ( <. f , g >. e. ( C Func D ) -> <. f , g >. e. ( ( ( Base ` D ) ^m ( Base ` C ) ) X. ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) ) ) ) |
| 59 | 21 58 | relssdv | |- ( ph -> ( C Func D ) C_ ( ( ( Base ` D ) ^m ( Base ` C ) ) X. ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) ) ) |
| 60 | 1 19 59 | wunss | |- ( ph -> ( C Func D ) e. U ) |