This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of the image of a mapping to cardinals is a cardinal. Proposition 11.16 of TakeutiZaring p. 104. (Contributed by NM, 4-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | carduniima | |- ( A e. B -> ( F : A --> ( _om u. ran aleph ) -> U. ( F " A ) e. ( _om u. ran aleph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun | |- ( F : A --> ( _om u. ran aleph ) -> Fun F ) |
|
| 2 | funimaexg | |- ( ( Fun F /\ A e. B ) -> ( F " A ) e. _V ) |
|
| 3 | 1 2 | sylan | |- ( ( F : A --> ( _om u. ran aleph ) /\ A e. B ) -> ( F " A ) e. _V ) |
| 4 | 3 | expcom | |- ( A e. B -> ( F : A --> ( _om u. ran aleph ) -> ( F " A ) e. _V ) ) |
| 5 | fimass | |- ( F : A --> ( _om u. ran aleph ) -> ( F " A ) C_ ( _om u. ran aleph ) ) |
|
| 6 | 5 | sseld | |- ( F : A --> ( _om u. ran aleph ) -> ( x e. ( F " A ) -> x e. ( _om u. ran aleph ) ) ) |
| 7 | iscard3 | |- ( ( card ` x ) = x <-> x e. ( _om u. ran aleph ) ) |
|
| 8 | 6 7 | imbitrrdi | |- ( F : A --> ( _om u. ran aleph ) -> ( x e. ( F " A ) -> ( card ` x ) = x ) ) |
| 9 | 8 | ralrimiv | |- ( F : A --> ( _om u. ran aleph ) -> A. x e. ( F " A ) ( card ` x ) = x ) |
| 10 | carduni | |- ( ( F " A ) e. _V -> ( A. x e. ( F " A ) ( card ` x ) = x -> ( card ` U. ( F " A ) ) = U. ( F " A ) ) ) |
|
| 11 | 9 10 | syl5 | |- ( ( F " A ) e. _V -> ( F : A --> ( _om u. ran aleph ) -> ( card ` U. ( F " A ) ) = U. ( F " A ) ) ) |
| 12 | 4 11 | syli | |- ( A e. B -> ( F : A --> ( _om u. ran aleph ) -> ( card ` U. ( F " A ) ) = U. ( F " A ) ) ) |
| 13 | iscard3 | |- ( ( card ` U. ( F " A ) ) = U. ( F " A ) <-> U. ( F " A ) e. ( _om u. ran aleph ) ) |
|
| 14 | 12 13 | imbitrdi | |- ( A e. B -> ( F : A --> ( _om u. ran aleph ) -> U. ( F " A ) e. ( _om u. ran aleph ) ) ) |