This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of TakeutiZaring p. 90. (Contributed by NM, 3-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephiso | |- aleph Isom _E , _E ( On , { x | ( _om C_ x /\ ( card ` x ) = x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon | |- aleph Fn On |
|
| 2 | isinfcard | |- ( ( _om C_ x /\ ( card ` x ) = x ) <-> x e. ran aleph ) |
|
| 3 | 2 | bicomi | |- ( x e. ran aleph <-> ( _om C_ x /\ ( card ` x ) = x ) ) |
| 4 | 3 | eqabi | |- ran aleph = { x | ( _om C_ x /\ ( card ` x ) = x ) } |
| 5 | df-fo | |- ( aleph : On -onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } <-> ( aleph Fn On /\ ran aleph = { x | ( _om C_ x /\ ( card ` x ) = x ) } ) ) |
|
| 6 | 1 4 5 | mpbir2an | |- aleph : On -onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } |
| 7 | fof | |- ( aleph : On -onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } -> aleph : On --> { x | ( _om C_ x /\ ( card ` x ) = x ) } ) |
|
| 8 | 6 7 | ax-mp | |- aleph : On --> { x | ( _om C_ x /\ ( card ` x ) = x ) } |
| 9 | aleph11 | |- ( ( y e. On /\ z e. On ) -> ( ( aleph ` y ) = ( aleph ` z ) <-> y = z ) ) |
|
| 10 | 9 | biimpd | |- ( ( y e. On /\ z e. On ) -> ( ( aleph ` y ) = ( aleph ` z ) -> y = z ) ) |
| 11 | 10 | rgen2 | |- A. y e. On A. z e. On ( ( aleph ` y ) = ( aleph ` z ) -> y = z ) |
| 12 | dff13 | |- ( aleph : On -1-1-> { x | ( _om C_ x /\ ( card ` x ) = x ) } <-> ( aleph : On --> { x | ( _om C_ x /\ ( card ` x ) = x ) } /\ A. y e. On A. z e. On ( ( aleph ` y ) = ( aleph ` z ) -> y = z ) ) ) |
|
| 13 | 8 11 12 | mpbir2an | |- aleph : On -1-1-> { x | ( _om C_ x /\ ( card ` x ) = x ) } |
| 14 | df-f1o | |- ( aleph : On -1-1-onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } <-> ( aleph : On -1-1-> { x | ( _om C_ x /\ ( card ` x ) = x ) } /\ aleph : On -onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } ) ) |
|
| 15 | 13 6 14 | mpbir2an | |- aleph : On -1-1-onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } |
| 16 | alephord2 | |- ( ( y e. On /\ z e. On ) -> ( y e. z <-> ( aleph ` y ) e. ( aleph ` z ) ) ) |
|
| 17 | epel | |- ( y _E z <-> y e. z ) |
|
| 18 | fvex | |- ( aleph ` z ) e. _V |
|
| 19 | 18 | epeli | |- ( ( aleph ` y ) _E ( aleph ` z ) <-> ( aleph ` y ) e. ( aleph ` z ) ) |
| 20 | 16 17 19 | 3bitr4g | |- ( ( y e. On /\ z e. On ) -> ( y _E z <-> ( aleph ` y ) _E ( aleph ` z ) ) ) |
| 21 | 20 | rgen2 | |- A. y e. On A. z e. On ( y _E z <-> ( aleph ` y ) _E ( aleph ` z ) ) |
| 22 | df-isom | |- ( aleph Isom _E , _E ( On , { x | ( _om C_ x /\ ( card ` x ) = x ) } ) <-> ( aleph : On -1-1-onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } /\ A. y e. On A. z e. On ( y _E z <-> ( aleph ` y ) _E ( aleph ` z ) ) ) ) |
|
| 23 | 15 21 22 | mpbir2an | |- aleph Isom _E , _E ( On , { x | ( _om C_ x /\ ( card ` x ) = x ) } ) |