This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of an extended function is the same as the original. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | extmptsuppeq.b | |- ( ph -> B e. W ) |
|
| extmptsuppeq.a | |- ( ph -> A C_ B ) |
||
| extmptsuppeq.z | |- ( ( ph /\ n e. ( B \ A ) ) -> X = Z ) |
||
| Assertion | extmptsuppeq | |- ( ph -> ( ( n e. A |-> X ) supp Z ) = ( ( n e. B |-> X ) supp Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | extmptsuppeq.b | |- ( ph -> B e. W ) |
|
| 2 | extmptsuppeq.a | |- ( ph -> A C_ B ) |
|
| 3 | extmptsuppeq.z | |- ( ( ph /\ n e. ( B \ A ) ) -> X = Z ) |
|
| 4 | 2 | adantl | |- ( ( Z e. _V /\ ph ) -> A C_ B ) |
| 5 | 4 | sseld | |- ( ( Z e. _V /\ ph ) -> ( n e. A -> n e. B ) ) |
| 6 | 5 | anim1d | |- ( ( Z e. _V /\ ph ) -> ( ( n e. A /\ X e. ( _V \ { Z } ) ) -> ( n e. B /\ X e. ( _V \ { Z } ) ) ) ) |
| 7 | eldif | |- ( n e. ( B \ A ) <-> ( n e. B /\ -. n e. A ) ) |
|
| 8 | 3 | adantll | |- ( ( ( Z e. _V /\ ph ) /\ n e. ( B \ A ) ) -> X = Z ) |
| 9 | 7 8 | sylan2br | |- ( ( ( Z e. _V /\ ph ) /\ ( n e. B /\ -. n e. A ) ) -> X = Z ) |
| 10 | 9 | expr | |- ( ( ( Z e. _V /\ ph ) /\ n e. B ) -> ( -. n e. A -> X = Z ) ) |
| 11 | elsn2g | |- ( Z e. _V -> ( X e. { Z } <-> X = Z ) ) |
|
| 12 | elndif | |- ( X e. { Z } -> -. X e. ( _V \ { Z } ) ) |
|
| 13 | 11 12 | biimtrrdi | |- ( Z e. _V -> ( X = Z -> -. X e. ( _V \ { Z } ) ) ) |
| 14 | 13 | ad2antrr | |- ( ( ( Z e. _V /\ ph ) /\ n e. B ) -> ( X = Z -> -. X e. ( _V \ { Z } ) ) ) |
| 15 | 10 14 | syld | |- ( ( ( Z e. _V /\ ph ) /\ n e. B ) -> ( -. n e. A -> -. X e. ( _V \ { Z } ) ) ) |
| 16 | 15 | con4d | |- ( ( ( Z e. _V /\ ph ) /\ n e. B ) -> ( X e. ( _V \ { Z } ) -> n e. A ) ) |
| 17 | 16 | impr | |- ( ( ( Z e. _V /\ ph ) /\ ( n e. B /\ X e. ( _V \ { Z } ) ) ) -> n e. A ) |
| 18 | simprr | |- ( ( ( Z e. _V /\ ph ) /\ ( n e. B /\ X e. ( _V \ { Z } ) ) ) -> X e. ( _V \ { Z } ) ) |
|
| 19 | 17 18 | jca | |- ( ( ( Z e. _V /\ ph ) /\ ( n e. B /\ X e. ( _V \ { Z } ) ) ) -> ( n e. A /\ X e. ( _V \ { Z } ) ) ) |
| 20 | 19 | ex | |- ( ( Z e. _V /\ ph ) -> ( ( n e. B /\ X e. ( _V \ { Z } ) ) -> ( n e. A /\ X e. ( _V \ { Z } ) ) ) ) |
| 21 | 6 20 | impbid | |- ( ( Z e. _V /\ ph ) -> ( ( n e. A /\ X e. ( _V \ { Z } ) ) <-> ( n e. B /\ X e. ( _V \ { Z } ) ) ) ) |
| 22 | 21 | rabbidva2 | |- ( ( Z e. _V /\ ph ) -> { n e. A | X e. ( _V \ { Z } ) } = { n e. B | X e. ( _V \ { Z } ) } ) |
| 23 | eqid | |- ( n e. A |-> X ) = ( n e. A |-> X ) |
|
| 24 | 1 2 | ssexd | |- ( ph -> A e. _V ) |
| 25 | 24 | adantl | |- ( ( Z e. _V /\ ph ) -> A e. _V ) |
| 26 | simpl | |- ( ( Z e. _V /\ ph ) -> Z e. _V ) |
|
| 27 | 23 25 26 | mptsuppdifd | |- ( ( Z e. _V /\ ph ) -> ( ( n e. A |-> X ) supp Z ) = { n e. A | X e. ( _V \ { Z } ) } ) |
| 28 | eqid | |- ( n e. B |-> X ) = ( n e. B |-> X ) |
|
| 29 | 1 | adantl | |- ( ( Z e. _V /\ ph ) -> B e. W ) |
| 30 | 28 29 26 | mptsuppdifd | |- ( ( Z e. _V /\ ph ) -> ( ( n e. B |-> X ) supp Z ) = { n e. B | X e. ( _V \ { Z } ) } ) |
| 31 | 22 27 30 | 3eqtr4d | |- ( ( Z e. _V /\ ph ) -> ( ( n e. A |-> X ) supp Z ) = ( ( n e. B |-> X ) supp Z ) ) |
| 32 | 31 | ex | |- ( Z e. _V -> ( ph -> ( ( n e. A |-> X ) supp Z ) = ( ( n e. B |-> X ) supp Z ) ) ) |
| 33 | simpr | |- ( ( ( n e. A |-> X ) e. _V /\ Z e. _V ) -> Z e. _V ) |
|
| 34 | supp0prc | |- ( -. ( ( n e. A |-> X ) e. _V /\ Z e. _V ) -> ( ( n e. A |-> X ) supp Z ) = (/) ) |
|
| 35 | 33 34 | nsyl5 | |- ( -. Z e. _V -> ( ( n e. A |-> X ) supp Z ) = (/) ) |
| 36 | simpr | |- ( ( ( n e. B |-> X ) e. _V /\ Z e. _V ) -> Z e. _V ) |
|
| 37 | supp0prc | |- ( -. ( ( n e. B |-> X ) e. _V /\ Z e. _V ) -> ( ( n e. B |-> X ) supp Z ) = (/) ) |
|
| 38 | 36 37 | nsyl5 | |- ( -. Z e. _V -> ( ( n e. B |-> X ) supp Z ) = (/) ) |
| 39 | 35 38 | eqtr4d | |- ( -. Z e. _V -> ( ( n e. A |-> X ) supp Z ) = ( ( n e. B |-> X ) supp Z ) ) |
| 40 | 39 | a1d | |- ( -. Z e. _V -> ( ph -> ( ( n e. A |-> X ) supp Z ) = ( ( n e. B |-> X ) supp Z ) ) ) |
| 41 | 32 40 | pm2.61i | |- ( ph -> ( ( n e. A |-> X ) supp Z ) = ( ( n e. B |-> X ) supp Z ) ) |