This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raldifeq.1 | |- ( ph -> A C_ B ) |
|
| raldifeq.2 | |- ( ph -> A. x e. ( B \ A ) ps ) |
||
| Assertion | raldifeq | |- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raldifeq.1 | |- ( ph -> A C_ B ) |
|
| 2 | raldifeq.2 | |- ( ph -> A. x e. ( B \ A ) ps ) |
|
| 3 | 2 | biantrud | |- ( ph -> ( A. x e. A ps <-> ( A. x e. A ps /\ A. x e. ( B \ A ) ps ) ) ) |
| 4 | ralunb | |- ( A. x e. ( A u. ( B \ A ) ) ps <-> ( A. x e. A ps /\ A. x e. ( B \ A ) ps ) ) |
|
| 5 | 3 4 | bitr4di | |- ( ph -> ( A. x e. A ps <-> A. x e. ( A u. ( B \ A ) ) ps ) ) |
| 6 | undif | |- ( A C_ B <-> ( A u. ( B \ A ) ) = B ) |
|
| 7 | 1 6 | sylib | |- ( ph -> ( A u. ( B \ A ) ) = B ) |
| 8 | 7 | raleqdv | |- ( ph -> ( A. x e. ( A u. ( B \ A ) ) ps <-> A. x e. B ps ) ) |
| 9 | 5 8 | bitrd | |- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) ) |