This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two functions have the same support, one function is finitely supported iff the other one is finitely supported. (Contributed by AV, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppeqfsuppbi | |- ( ( ( F e. U /\ Fun F ) /\ ( G e. V /\ Fun G ) ) -> ( ( F supp Z ) = ( G supp Z ) -> ( F finSupp Z <-> G finSupp Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprlr | |- ( ( Z e. _V /\ ( ( F e. U /\ Fun F ) /\ ( G e. V /\ Fun G ) ) ) -> Fun F ) |
|
| 2 | simprll | |- ( ( Z e. _V /\ ( ( F e. U /\ Fun F ) /\ ( G e. V /\ Fun G ) ) ) -> F e. U ) |
|
| 3 | simpl | |- ( ( Z e. _V /\ ( ( F e. U /\ Fun F ) /\ ( G e. V /\ Fun G ) ) ) -> Z e. _V ) |
|
| 4 | funisfsupp | |- ( ( Fun F /\ F e. U /\ Z e. _V ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ( Z e. _V /\ ( ( F e. U /\ Fun F ) /\ ( G e. V /\ Fun G ) ) ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
| 6 | 5 | adantr | |- ( ( ( Z e. _V /\ ( ( F e. U /\ Fun F ) /\ ( G e. V /\ Fun G ) ) ) /\ ( F supp Z ) = ( G supp Z ) ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
| 7 | simpr | |- ( ( G e. V /\ Fun G ) -> Fun G ) |
|
| 8 | 7 | adantr | |- ( ( ( G e. V /\ Fun G ) /\ Z e. _V ) -> Fun G ) |
| 9 | simpl | |- ( ( G e. V /\ Fun G ) -> G e. V ) |
|
| 10 | 9 | adantr | |- ( ( ( G e. V /\ Fun G ) /\ Z e. _V ) -> G e. V ) |
| 11 | simpr | |- ( ( ( G e. V /\ Fun G ) /\ Z e. _V ) -> Z e. _V ) |
|
| 12 | funisfsupp | |- ( ( Fun G /\ G e. V /\ Z e. _V ) -> ( G finSupp Z <-> ( G supp Z ) e. Fin ) ) |
|
| 13 | 8 10 11 12 | syl3anc | |- ( ( ( G e. V /\ Fun G ) /\ Z e. _V ) -> ( G finSupp Z <-> ( G supp Z ) e. Fin ) ) |
| 14 | 13 | ex | |- ( ( G e. V /\ Fun G ) -> ( Z e. _V -> ( G finSupp Z <-> ( G supp Z ) e. Fin ) ) ) |
| 15 | 14 | adantl | |- ( ( ( F e. U /\ Fun F ) /\ ( G e. V /\ Fun G ) ) -> ( Z e. _V -> ( G finSupp Z <-> ( G supp Z ) e. Fin ) ) ) |
| 16 | 15 | impcom | |- ( ( Z e. _V /\ ( ( F e. U /\ Fun F ) /\ ( G e. V /\ Fun G ) ) ) -> ( G finSupp Z <-> ( G supp Z ) e. Fin ) ) |
| 17 | eleq1 | |- ( ( F supp Z ) = ( G supp Z ) -> ( ( F supp Z ) e. Fin <-> ( G supp Z ) e. Fin ) ) |
|
| 18 | 17 | bicomd | |- ( ( F supp Z ) = ( G supp Z ) -> ( ( G supp Z ) e. Fin <-> ( F supp Z ) e. Fin ) ) |
| 19 | 16 18 | sylan9bb | |- ( ( ( Z e. _V /\ ( ( F e. U /\ Fun F ) /\ ( G e. V /\ Fun G ) ) ) /\ ( F supp Z ) = ( G supp Z ) ) -> ( G finSupp Z <-> ( F supp Z ) e. Fin ) ) |
| 20 | 6 19 | bitr4d | |- ( ( ( Z e. _V /\ ( ( F e. U /\ Fun F ) /\ ( G e. V /\ Fun G ) ) ) /\ ( F supp Z ) = ( G supp Z ) ) -> ( F finSupp Z <-> G finSupp Z ) ) |
| 21 | 20 | exp31 | |- ( Z e. _V -> ( ( ( F e. U /\ Fun F ) /\ ( G e. V /\ Fun G ) ) -> ( ( F supp Z ) = ( G supp Z ) -> ( F finSupp Z <-> G finSupp Z ) ) ) ) |
| 22 | relfsupp | |- Rel finSupp |
|
| 23 | 22 | brrelex2i | |- ( F finSupp Z -> Z e. _V ) |
| 24 | 22 | brrelex2i | |- ( G finSupp Z -> Z e. _V ) |
| 25 | 23 24 | pm5.21ni | |- ( -. Z e. _V -> ( F finSupp Z <-> G finSupp Z ) ) |
| 26 | 25 | 2a1d | |- ( -. Z e. _V -> ( ( ( F e. U /\ Fun F ) /\ ( G e. V /\ Fun G ) ) -> ( ( F supp Z ) = ( G supp Z ) -> ( F finSupp Z <-> G finSupp Z ) ) ) ) |
| 27 | 21 26 | pm2.61i | |- ( ( ( F e. U /\ Fun F ) /\ ( G e. V /\ Fun G ) ) -> ( ( F supp Z ) = ( G supp Z ) -> ( F finSupp Z <-> G finSupp Z ) ) ) |