This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A and B are cosets by the converse range Cartesian product: a binary relation. (Contributed by Peter Mazsa, 19-Apr-2020) (Revised by Peter Mazsa, 21-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cosscnvxrn | |- ( ( A e. V /\ B e. W ) -> ( A ,~ `' ( R |X. S ) B <-> ( A ,~ `' R B /\ A ,~ `' S B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecxrn | |- ( A e. V -> [ A ] ( R |X. S ) = { <. x , y >. | ( A R x /\ A S y ) } ) |
|
| 2 | ecxrn | |- ( B e. W -> [ B ] ( R |X. S ) = { <. x , y >. | ( B R x /\ B S y ) } ) |
|
| 3 | 1 2 | ineqan12d | |- ( ( A e. V /\ B e. W ) -> ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = ( { <. x , y >. | ( A R x /\ A S y ) } i^i { <. x , y >. | ( B R x /\ B S y ) } ) ) |
| 4 | inopab | |- ( { <. x , y >. | ( A R x /\ A S y ) } i^i { <. x , y >. | ( B R x /\ B S y ) } ) = { <. x , y >. | ( ( A R x /\ A S y ) /\ ( B R x /\ B S y ) ) } |
|
| 5 | 3 4 | eqtrdi | |- ( ( A e. V /\ B e. W ) -> ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = { <. x , y >. | ( ( A R x /\ A S y ) /\ ( B R x /\ B S y ) ) } ) |
| 6 | an4 | |- ( ( ( A R x /\ A S y ) /\ ( B R x /\ B S y ) ) <-> ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) ) |
|
| 7 | 6 | opabbii | |- { <. x , y >. | ( ( A R x /\ A S y ) /\ ( B R x /\ B S y ) ) } = { <. x , y >. | ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) } |
| 8 | 5 7 | eqtrdi | |- ( ( A e. V /\ B e. W ) -> ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = { <. x , y >. | ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) } ) |
| 9 | 8 | neeq1d | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) <-> { <. x , y >. | ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) } =/= (/) ) ) |
| 10 | opabn0 | |- ( { <. x , y >. | ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) } =/= (/) <-> E. x E. y ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) ) |
|
| 11 | exdistrv | |- ( E. x E. y ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) <-> ( E. x ( A R x /\ B R x ) /\ E. y ( A S y /\ B S y ) ) ) |
|
| 12 | 10 11 | bitri | |- ( { <. x , y >. | ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) } =/= (/) <-> ( E. x ( A R x /\ B R x ) /\ E. y ( A S y /\ B S y ) ) ) |
| 13 | 9 12 | bitrdi | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) <-> ( E. x ( A R x /\ B R x ) /\ E. y ( A S y /\ B S y ) ) ) ) |
| 14 | brcosscnv2 | |- ( ( A e. V /\ B e. W ) -> ( A ,~ `' ( R |X. S ) B <-> ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) ) ) |
|
| 15 | brcosscnv | |- ( ( A e. V /\ B e. W ) -> ( A ,~ `' R B <-> E. x ( A R x /\ B R x ) ) ) |
|
| 16 | brcosscnv | |- ( ( A e. V /\ B e. W ) -> ( A ,~ `' S B <-> E. y ( A S y /\ B S y ) ) ) |
|
| 17 | 15 16 | anbi12d | |- ( ( A e. V /\ B e. W ) -> ( ( A ,~ `' R B /\ A ,~ `' S B ) <-> ( E. x ( A R x /\ B R x ) /\ E. y ( A S y /\ B S y ) ) ) ) |
| 18 | 13 14 17 | 3bitr4d | |- ( ( A e. V /\ B e. W ) -> ( A ,~ `' ( R |X. S ) B <-> ( A ,~ `' R B /\ A ,~ `' S B ) ) ) |