This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020) (Revised by Peter Mazsa, 21-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1cosscnvxrn | |- ,~ `' ( A |X. B ) = ( ,~ `' A i^i ,~ `' B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br1cosscnvxrn | |- ( ( x e. _V /\ y e. _V ) -> ( x ,~ `' ( A |X. B ) y <-> ( x ,~ `' A y /\ x ,~ `' B y ) ) ) |
|
| 2 | 1 | el2v | |- ( x ,~ `' ( A |X. B ) y <-> ( x ,~ `' A y /\ x ,~ `' B y ) ) |
| 3 | 2 | opabbii | |- { <. x , y >. | x ,~ `' ( A |X. B ) y } = { <. x , y >. | ( x ,~ `' A y /\ x ,~ `' B y ) } |
| 4 | inopab | |- ( { <. x , y >. | x ,~ `' A y } i^i { <. x , y >. | x ,~ `' B y } ) = { <. x , y >. | ( x ,~ `' A y /\ x ,~ `' B y ) } |
|
| 5 | 3 4 | eqtr4i | |- { <. x , y >. | x ,~ `' ( A |X. B ) y } = ( { <. x , y >. | x ,~ `' A y } i^i { <. x , y >. | x ,~ `' B y } ) |
| 6 | relcoss | |- Rel ,~ `' ( A |X. B ) |
|
| 7 | dfrel4v | |- ( Rel ,~ `' ( A |X. B ) <-> ,~ `' ( A |X. B ) = { <. x , y >. | x ,~ `' ( A |X. B ) y } ) |
|
| 8 | 6 7 | mpbi | |- ,~ `' ( A |X. B ) = { <. x , y >. | x ,~ `' ( A |X. B ) y } |
| 9 | relcoss | |- Rel ,~ `' A |
|
| 10 | dfrel4v | |- ( Rel ,~ `' A <-> ,~ `' A = { <. x , y >. | x ,~ `' A y } ) |
|
| 11 | 9 10 | mpbi | |- ,~ `' A = { <. x , y >. | x ,~ `' A y } |
| 12 | relcoss | |- Rel ,~ `' B |
|
| 13 | dfrel4v | |- ( Rel ,~ `' B <-> ,~ `' B = { <. x , y >. | x ,~ `' B y } ) |
|
| 14 | 12 13 | mpbi | |- ,~ `' B = { <. x , y >. | x ,~ `' B y } |
| 15 | 11 14 | ineq12i | |- ( ,~ `' A i^i ,~ `' B ) = ( { <. x , y >. | x ,~ `' A y } i^i { <. x , y >. | x ,~ `' B y } ) |
| 16 | 5 8 15 | 3eqtr4i | |- ,~ `' ( A |X. B ) = ( ,~ `' A i^i ,~ `' B ) |