This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A and B are cosets by converse R : a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brcosscnv | |- ( ( A e. V /\ B e. W ) -> ( A ,~ `' R B <-> E. x ( A R x /\ B R x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcoss | |- ( ( A e. V /\ B e. W ) -> ( A ,~ `' R B <-> E. x ( x `' R A /\ x `' R B ) ) ) |
|
| 2 | brcnvg | |- ( ( x e. _V /\ A e. V ) -> ( x `' R A <-> A R x ) ) |
|
| 3 | 2 | el2v1 | |- ( A e. V -> ( x `' R A <-> A R x ) ) |
| 4 | brcnvg | |- ( ( x e. _V /\ B e. W ) -> ( x `' R B <-> B R x ) ) |
|
| 5 | 4 | el2v1 | |- ( B e. W -> ( x `' R B <-> B R x ) ) |
| 6 | 3 5 | bi2anan9 | |- ( ( A e. V /\ B e. W ) -> ( ( x `' R A /\ x `' R B ) <-> ( A R x /\ B R x ) ) ) |
| 7 | 6 | exbidv | |- ( ( A e. V /\ B e. W ) -> ( E. x ( x `' R A /\ x `' R B ) <-> E. x ( A R x /\ B R x ) ) ) |
| 8 | 1 7 | bitrd | |- ( ( A e. V /\ B e. W ) -> ( A ,~ `' R B <-> E. x ( A R x /\ B R x ) ) ) |