This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of the binomial theorem using rising factorials instead of exponentials. (Contributed by Scott Fenton, 16-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binomrisefac | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A + B ) RiseFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A RiseFac ( N - k ) ) x. ( B RiseFac k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negdi | |- ( ( A e. CC /\ B e. CC ) -> -u ( A + B ) = ( -u A + -u B ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> -u ( A + B ) = ( -u A + -u B ) ) |
| 3 | 2 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( -u ( A + B ) FallFac N ) = ( ( -u A + -u B ) FallFac N ) ) |
| 4 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 5 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
| 6 | id | |- ( N e. NN0 -> N e. NN0 ) |
|
| 7 | binomfallfac | |- ( ( -u A e. CC /\ -u B e. CC /\ N e. NN0 ) -> ( ( -u A + -u B ) FallFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) |
|
| 8 | 4 5 6 7 | syl3an | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( -u A + -u B ) FallFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) |
| 9 | 3 8 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( -u ( A + B ) FallFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) |
| 10 | 9 | oveq2d | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( -u 1 ^ N ) x. ( -u ( A + B ) FallFac N ) ) = ( ( -u 1 ^ N ) x. sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) ) |
| 11 | fzfid | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( 0 ... N ) e. Fin ) |
|
| 12 | neg1cn | |- -u 1 e. CC |
|
| 13 | expcl | |- ( ( -u 1 e. CC /\ N e. NN0 ) -> ( -u 1 ^ N ) e. CC ) |
|
| 14 | 12 13 | mpan | |- ( N e. NN0 -> ( -u 1 ^ N ) e. CC ) |
| 15 | 14 | 3ad2ant3 | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( -u 1 ^ N ) e. CC ) |
| 16 | simp3 | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> N e. NN0 ) |
|
| 17 | elfzelz | |- ( k e. ( 0 ... N ) -> k e. ZZ ) |
|
| 18 | bccl | |- ( ( N e. NN0 /\ k e. ZZ ) -> ( N _C k ) e. NN0 ) |
|
| 19 | 16 17 18 | syl2an | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. NN0 ) |
| 20 | 19 | nn0cnd | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. CC ) |
| 21 | simpl1 | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> A e. CC ) |
|
| 22 | 21 | negcld | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> -u A e. CC ) |
| 23 | 16 | nn0zd | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> N e. ZZ ) |
| 24 | zsubcl | |- ( ( N e. ZZ /\ k e. ZZ ) -> ( N - k ) e. ZZ ) |
|
| 25 | 23 17 24 | syl2an | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( N - k ) e. ZZ ) |
| 26 | elfzle2 | |- ( k e. ( 0 ... N ) -> k <_ N ) |
|
| 27 | 26 | adantl | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> k <_ N ) |
| 28 | simpl3 | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> N e. NN0 ) |
|
| 29 | 28 | nn0red | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> N e. RR ) |
| 30 | elfznn0 | |- ( k e. ( 0 ... N ) -> k e. NN0 ) |
|
| 31 | 30 | adantl | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> k e. NN0 ) |
| 32 | 31 | nn0red | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> k e. RR ) |
| 33 | 29 32 | subge0d | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( 0 <_ ( N - k ) <-> k <_ N ) ) |
| 34 | 27 33 | mpbird | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> 0 <_ ( N - k ) ) |
| 35 | elnn0z | |- ( ( N - k ) e. NN0 <-> ( ( N - k ) e. ZZ /\ 0 <_ ( N - k ) ) ) |
|
| 36 | 25 34 35 | sylanbrc | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( N - k ) e. NN0 ) |
| 37 | fallfaccl | |- ( ( -u A e. CC /\ ( N - k ) e. NN0 ) -> ( -u A FallFac ( N - k ) ) e. CC ) |
|
| 38 | 22 36 37 | syl2anc | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( -u A FallFac ( N - k ) ) e. CC ) |
| 39 | simp2 | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> B e. CC ) |
|
| 40 | 39 | negcld | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> -u B e. CC ) |
| 41 | fallfaccl | |- ( ( -u B e. CC /\ k e. NN0 ) -> ( -u B FallFac k ) e. CC ) |
|
| 42 | 40 30 41 | syl2an | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( -u B FallFac k ) e. CC ) |
| 43 | 38 42 | mulcld | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) e. CC ) |
| 44 | 20 43 | mulcld | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) e. CC ) |
| 45 | 11 15 44 | fsummulc2 | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( -u 1 ^ N ) x. sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( -u 1 ^ N ) x. ( ( N _C k ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) ) |
| 46 | 10 45 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( -u 1 ^ N ) x. ( -u ( A + B ) FallFac N ) ) = sum_ k e. ( 0 ... N ) ( ( -u 1 ^ N ) x. ( ( N _C k ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) ) |
| 47 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 48 | risefallfac | |- ( ( ( A + B ) e. CC /\ N e. NN0 ) -> ( ( A + B ) RiseFac N ) = ( ( -u 1 ^ N ) x. ( -u ( A + B ) FallFac N ) ) ) |
|
| 49 | 47 48 | stoic3 | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A + B ) RiseFac N ) = ( ( -u 1 ^ N ) x. ( -u ( A + B ) FallFac N ) ) ) |
| 50 | risefallfac | |- ( ( A e. CC /\ ( N - k ) e. NN0 ) -> ( A RiseFac ( N - k ) ) = ( ( -u 1 ^ ( N - k ) ) x. ( -u A FallFac ( N - k ) ) ) ) |
|
| 51 | 21 36 50 | syl2anc | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( A RiseFac ( N - k ) ) = ( ( -u 1 ^ ( N - k ) ) x. ( -u A FallFac ( N - k ) ) ) ) |
| 52 | simpl2 | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> B e. CC ) |
|
| 53 | risefallfac | |- ( ( B e. CC /\ k e. NN0 ) -> ( B RiseFac k ) = ( ( -u 1 ^ k ) x. ( -u B FallFac k ) ) ) |
|
| 54 | 52 31 53 | syl2anc | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( B RiseFac k ) = ( ( -u 1 ^ k ) x. ( -u B FallFac k ) ) ) |
| 55 | 51 54 | oveq12d | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( A RiseFac ( N - k ) ) x. ( B RiseFac k ) ) = ( ( ( -u 1 ^ ( N - k ) ) x. ( -u A FallFac ( N - k ) ) ) x. ( ( -u 1 ^ k ) x. ( -u B FallFac k ) ) ) ) |
| 56 | expcl | |- ( ( -u 1 e. CC /\ ( N - k ) e. NN0 ) -> ( -u 1 ^ ( N - k ) ) e. CC ) |
|
| 57 | 12 36 56 | sylancr | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( -u 1 ^ ( N - k ) ) e. CC ) |
| 58 | expcl | |- ( ( -u 1 e. CC /\ k e. NN0 ) -> ( -u 1 ^ k ) e. CC ) |
|
| 59 | 12 30 58 | sylancr | |- ( k e. ( 0 ... N ) -> ( -u 1 ^ k ) e. CC ) |
| 60 | 59 | adantl | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( -u 1 ^ k ) e. CC ) |
| 61 | 57 38 60 42 | mul4d | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( ( -u 1 ^ ( N - k ) ) x. ( -u A FallFac ( N - k ) ) ) x. ( ( -u 1 ^ k ) x. ( -u B FallFac k ) ) ) = ( ( ( -u 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) |
| 62 | 12 | a1i | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> -u 1 e. CC ) |
| 63 | 62 31 36 | expaddd | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( -u 1 ^ ( ( N - k ) + k ) ) = ( ( -u 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) ) |
| 64 | 16 | nn0cnd | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> N e. CC ) |
| 65 | 30 | nn0cnd | |- ( k e. ( 0 ... N ) -> k e. CC ) |
| 66 | npcan | |- ( ( N e. CC /\ k e. CC ) -> ( ( N - k ) + k ) = N ) |
|
| 67 | 64 65 66 | syl2an | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) + k ) = N ) |
| 68 | 67 | oveq2d | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( -u 1 ^ ( ( N - k ) + k ) ) = ( -u 1 ^ N ) ) |
| 69 | 63 68 | eqtr3d | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( -u 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) = ( -u 1 ^ N ) ) |
| 70 | 69 | oveq1d | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( ( -u 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) = ( ( -u 1 ^ N ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) |
| 71 | 55 61 70 | 3eqtrd | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( A RiseFac ( N - k ) ) x. ( B RiseFac k ) ) = ( ( -u 1 ^ N ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) |
| 72 | 71 | oveq2d | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( A RiseFac ( N - k ) ) x. ( B RiseFac k ) ) ) = ( ( N _C k ) x. ( ( -u 1 ^ N ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) ) |
| 73 | 15 | adantr | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( -u 1 ^ N ) e. CC ) |
| 74 | 20 73 43 | mul12d | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( -u 1 ^ N ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) = ( ( -u 1 ^ N ) x. ( ( N _C k ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) ) |
| 75 | 72 74 | eqtrd | |- ( ( ( A e. CC /\ B e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( A RiseFac ( N - k ) ) x. ( B RiseFac k ) ) ) = ( ( -u 1 ^ N ) x. ( ( N _C k ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) ) |
| 76 | 75 | sumeq2dv | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A RiseFac ( N - k ) ) x. ( B RiseFac k ) ) ) = sum_ k e. ( 0 ... N ) ( ( -u 1 ^ N ) x. ( ( N _C k ) x. ( ( -u A FallFac ( N - k ) ) x. ( -u B FallFac k ) ) ) ) ) |
| 77 | 46 49 76 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A + B ) RiseFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A RiseFac ( N - k ) ) x. ( B RiseFac k ) ) ) ) |