This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of the binomial theorem using falling factorials instead of exponentials. (Contributed by Scott Fenton, 13-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binomfallfac | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A + B ) FallFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( m = 0 -> ( ( A + B ) FallFac m ) = ( ( A + B ) FallFac 0 ) ) |
|
| 2 | oveq2 | |- ( m = 0 -> ( 0 ... m ) = ( 0 ... 0 ) ) |
|
| 3 | fz0sn | |- ( 0 ... 0 ) = { 0 } |
|
| 4 | 2 3 | eqtrdi | |- ( m = 0 -> ( 0 ... m ) = { 0 } ) |
| 5 | oveq1 | |- ( m = 0 -> ( m _C k ) = ( 0 _C k ) ) |
|
| 6 | oveq1 | |- ( m = 0 -> ( m - k ) = ( 0 - k ) ) |
|
| 7 | 6 | oveq2d | |- ( m = 0 -> ( A FallFac ( m - k ) ) = ( A FallFac ( 0 - k ) ) ) |
| 8 | 7 | oveq1d | |- ( m = 0 -> ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) = ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) |
| 9 | 5 8 | oveq12d | |- ( m = 0 -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) ) |
| 10 | 9 | adantr | |- ( ( m = 0 /\ k e. ( 0 ... m ) ) -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) ) |
| 11 | 4 10 | sumeq12dv | |- ( m = 0 -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) ) |
| 12 | 1 11 | eqeq12d | |- ( m = 0 -> ( ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) <-> ( ( A + B ) FallFac 0 ) = sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) ) ) |
| 13 | 12 | imbi2d | |- ( m = 0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac 0 ) = sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) ) ) ) |
| 14 | oveq2 | |- ( m = n -> ( ( A + B ) FallFac m ) = ( ( A + B ) FallFac n ) ) |
|
| 15 | oveq2 | |- ( m = n -> ( 0 ... m ) = ( 0 ... n ) ) |
|
| 16 | oveq1 | |- ( m = n -> ( m _C k ) = ( n _C k ) ) |
|
| 17 | oveq1 | |- ( m = n -> ( m - k ) = ( n - k ) ) |
|
| 18 | 17 | oveq2d | |- ( m = n -> ( A FallFac ( m - k ) ) = ( A FallFac ( n - k ) ) ) |
| 19 | 18 | oveq1d | |- ( m = n -> ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) = ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) |
| 20 | 16 19 | oveq12d | |- ( m = n -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) |
| 21 | 20 | adantr | |- ( ( m = n /\ k e. ( 0 ... m ) ) -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) |
| 22 | 15 21 | sumeq12dv | |- ( m = n -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) |
| 23 | 14 22 | eqeq12d | |- ( m = n -> ( ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) <-> ( ( A + B ) FallFac n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) ) |
| 24 | 23 | imbi2d | |- ( m = n -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) ) ) |
| 25 | oveq2 | |- ( m = ( n + 1 ) -> ( ( A + B ) FallFac m ) = ( ( A + B ) FallFac ( n + 1 ) ) ) |
|
| 26 | oveq2 | |- ( m = ( n + 1 ) -> ( 0 ... m ) = ( 0 ... ( n + 1 ) ) ) |
|
| 27 | oveq1 | |- ( m = ( n + 1 ) -> ( m _C k ) = ( ( n + 1 ) _C k ) ) |
|
| 28 | oveq1 | |- ( m = ( n + 1 ) -> ( m - k ) = ( ( n + 1 ) - k ) ) |
|
| 29 | 28 | oveq2d | |- ( m = ( n + 1 ) -> ( A FallFac ( m - k ) ) = ( A FallFac ( ( n + 1 ) - k ) ) ) |
| 30 | 29 | oveq1d | |- ( m = ( n + 1 ) -> ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) = ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) |
| 31 | 27 30 | oveq12d | |- ( m = ( n + 1 ) -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) |
| 32 | 31 | adantr | |- ( ( m = ( n + 1 ) /\ k e. ( 0 ... m ) ) -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) |
| 33 | 26 32 | sumeq12dv | |- ( m = ( n + 1 ) -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) |
| 34 | 25 33 | eqeq12d | |- ( m = ( n + 1 ) -> ( ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) <-> ( ( A + B ) FallFac ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) ) |
| 35 | 34 | imbi2d | |- ( m = ( n + 1 ) -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) ) ) |
| 36 | oveq2 | |- ( m = N -> ( ( A + B ) FallFac m ) = ( ( A + B ) FallFac N ) ) |
|
| 37 | oveq2 | |- ( m = N -> ( 0 ... m ) = ( 0 ... N ) ) |
|
| 38 | oveq1 | |- ( m = N -> ( m _C k ) = ( N _C k ) ) |
|
| 39 | oveq1 | |- ( m = N -> ( m - k ) = ( N - k ) ) |
|
| 40 | 39 | oveq2d | |- ( m = N -> ( A FallFac ( m - k ) ) = ( A FallFac ( N - k ) ) ) |
| 41 | 40 | oveq1d | |- ( m = N -> ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) = ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) |
| 42 | 38 41 | oveq12d | |- ( m = N -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) |
| 43 | 42 | adantr | |- ( ( m = N /\ k e. ( 0 ... m ) ) -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) |
| 44 | 37 43 | sumeq12dv | |- ( m = N -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) |
| 45 | 36 44 | eqeq12d | |- ( m = N -> ( ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) <-> ( ( A + B ) FallFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) ) |
| 46 | 45 | imbi2d | |- ( m = N -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) ) ) |
| 47 | fallfac0 | |- ( A e. CC -> ( A FallFac 0 ) = 1 ) |
|
| 48 | fallfac0 | |- ( B e. CC -> ( B FallFac 0 ) = 1 ) |
|
| 49 | 47 48 | oveqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) = ( 1 x. 1 ) ) |
| 50 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 51 | 49 50 | eqtrdi | |- ( ( A e. CC /\ B e. CC ) -> ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) = 1 ) |
| 52 | 51 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) = ( 1 x. 1 ) ) |
| 53 | 52 50 | eqtrdi | |- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) = 1 ) |
| 54 | 0cn | |- 0 e. CC |
|
| 55 | ax-1cn | |- 1 e. CC |
|
| 56 | 53 55 | eqeltrdi | |- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) e. CC ) |
| 57 | oveq2 | |- ( k = 0 -> ( 0 _C k ) = ( 0 _C 0 ) ) |
|
| 58 | 0nn0 | |- 0 e. NN0 |
|
| 59 | bcnn | |- ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) |
|
| 60 | 58 59 | ax-mp | |- ( 0 _C 0 ) = 1 |
| 61 | 57 60 | eqtrdi | |- ( k = 0 -> ( 0 _C k ) = 1 ) |
| 62 | oveq2 | |- ( k = 0 -> ( 0 - k ) = ( 0 - 0 ) ) |
|
| 63 | 0m0e0 | |- ( 0 - 0 ) = 0 |
|
| 64 | 62 63 | eqtrdi | |- ( k = 0 -> ( 0 - k ) = 0 ) |
| 65 | 64 | oveq2d | |- ( k = 0 -> ( A FallFac ( 0 - k ) ) = ( A FallFac 0 ) ) |
| 66 | oveq2 | |- ( k = 0 -> ( B FallFac k ) = ( B FallFac 0 ) ) |
|
| 67 | 65 66 | oveq12d | |- ( k = 0 -> ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) = ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) |
| 68 | 61 67 | oveq12d | |- ( k = 0 -> ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) = ( 1 x. ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) ) |
| 69 | 68 | sumsn | |- ( ( 0 e. CC /\ ( 1 x. ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) e. CC ) -> sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) = ( 1 x. ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) ) |
| 70 | 54 56 69 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) = ( 1 x. ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) ) |
| 71 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 72 | fallfac0 | |- ( ( A + B ) e. CC -> ( ( A + B ) FallFac 0 ) = 1 ) |
|
| 73 | 71 72 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac 0 ) = 1 ) |
| 74 | 53 70 73 | 3eqtr4rd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac 0 ) = sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) ) |
| 75 | simprl | |- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> A e. CC ) |
|
| 76 | simprr | |- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> B e. CC ) |
|
| 77 | simpl | |- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> n e. NN0 ) |
|
| 78 | id | |- ( ( ( A + B ) FallFac n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) -> ( ( A + B ) FallFac n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) |
|
| 79 | 75 76 77 78 | binomfallfaclem2 | |- ( ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) /\ ( ( A + B ) FallFac n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) -> ( ( A + B ) FallFac ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) |
| 80 | 79 | exp31 | |- ( n e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) FallFac n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) -> ( ( A + B ) FallFac ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) ) ) |
| 81 | 80 | a2d | |- ( n e. NN0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) -> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) ) ) |
| 82 | 13 24 35 46 74 81 | nn0ind | |- ( N e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) ) |
| 83 | 82 | com12 | |- ( ( A e. CC /\ B e. CC ) -> ( N e. NN0 -> ( ( A + B ) FallFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) ) |
| 84 | 83 | 3impia | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A + B ) FallFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) |