This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of the binomial theorem for 2 ^ N . (Contributed by Mario Carneiro, 13-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom11 | |- ( N e. NN0 -> ( 2 ^ N ) = sum_ k e. ( 0 ... N ) ( N _C k ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 2 | 1 | oveq1i | |- ( 2 ^ N ) = ( ( 1 + 1 ) ^ N ) |
| 3 | ax-1cn | |- 1 e. CC |
|
| 4 | binom1p | |- ( ( 1 e. CC /\ N e. NN0 ) -> ( ( 1 + 1 ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( 1 ^ k ) ) ) |
|
| 5 | 3 4 | mpan | |- ( N e. NN0 -> ( ( 1 + 1 ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( 1 ^ k ) ) ) |
| 6 | 2 5 | eqtrid | |- ( N e. NN0 -> ( 2 ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( 1 ^ k ) ) ) |
| 7 | elfzelz | |- ( k e. ( 0 ... N ) -> k e. ZZ ) |
|
| 8 | 1exp | |- ( k e. ZZ -> ( 1 ^ k ) = 1 ) |
|
| 9 | 7 8 | syl | |- ( k e. ( 0 ... N ) -> ( 1 ^ k ) = 1 ) |
| 10 | 9 | oveq2d | |- ( k e. ( 0 ... N ) -> ( ( N _C k ) x. ( 1 ^ k ) ) = ( ( N _C k ) x. 1 ) ) |
| 11 | bccl2 | |- ( k e. ( 0 ... N ) -> ( N _C k ) e. NN ) |
|
| 12 | 11 | nncnd | |- ( k e. ( 0 ... N ) -> ( N _C k ) e. CC ) |
| 13 | 12 | mulridd | |- ( k e. ( 0 ... N ) -> ( ( N _C k ) x. 1 ) = ( N _C k ) ) |
| 14 | 10 13 | eqtrd | |- ( k e. ( 0 ... N ) -> ( ( N _C k ) x. ( 1 ^ k ) ) = ( N _C k ) ) |
| 15 | 14 | sumeq2i | |- sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( 1 ^ k ) ) = sum_ k e. ( 0 ... N ) ( N _C k ) |
| 16 | 6 15 | eqtrdi | |- ( N e. NN0 -> ( 2 ^ N ) = sum_ k e. ( 0 ... N ) ( N _C k ) ) |