This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Brahmagupta-Fibonacci identity for complex numbers. Express the product of two sums of two squares as a sum of two squares. Second result. (Contributed by Thierry Arnoux, 1-Feb-2020) Generalization for complex numbers proposed by GL. (Revised by AV, 8-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bhmafibid2cn | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> A e. CC ) |
|
| 2 | 1 | sqcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A ^ 2 ) e. CC ) |
| 3 | simprl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> C e. CC ) |
|
| 4 | 3 | sqcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( C ^ 2 ) e. CC ) |
| 5 | 2 4 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A ^ 2 ) x. ( C ^ 2 ) ) e. CC ) |
| 6 | simprr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> D e. CC ) |
|
| 7 | 6 | sqcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( D ^ 2 ) e. CC ) |
| 8 | simplr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> B e. CC ) |
|
| 9 | 8 | sqcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B ^ 2 ) e. CC ) |
| 10 | 7 9 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( D ^ 2 ) x. ( B ^ 2 ) ) e. CC ) |
| 11 | 2 7 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A ^ 2 ) x. ( D ^ 2 ) ) e. CC ) |
| 12 | 4 9 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( C ^ 2 ) x. ( B ^ 2 ) ) e. CC ) |
| 13 | 5 10 11 12 | add4d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( ( A ^ 2 ) x. ( D ^ 2 ) ) + ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( A ^ 2 ) x. ( D ^ 2 ) ) ) + ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) ) ) |
| 14 | 7 9 | mulcomd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( D ^ 2 ) x. ( B ^ 2 ) ) = ( ( B ^ 2 ) x. ( D ^ 2 ) ) ) |
| 15 | 4 9 | mulcomd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( C ^ 2 ) x. ( B ^ 2 ) ) = ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) |
| 16 | 14 15 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) = ( ( ( B ^ 2 ) x. ( D ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) |
| 17 | 16 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( A ^ 2 ) x. ( D ^ 2 ) ) ) + ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( A ^ 2 ) x. ( D ^ 2 ) ) ) + ( ( ( B ^ 2 ) x. ( D ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) ) |
| 18 | 13 17 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( ( A ^ 2 ) x. ( D ^ 2 ) ) + ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( A ^ 2 ) x. ( D ^ 2 ) ) ) + ( ( ( B ^ 2 ) x. ( D ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) ) |
| 19 | 2 9 4 7 | muladdd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( ( A ^ 2 ) x. ( D ^ 2 ) ) + ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) ) ) |
| 20 | 1 3 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A x. C ) e. CC ) |
| 21 | 8 6 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. D ) e. CC ) |
| 22 | binom2 | |- ( ( ( A x. C ) e. CC /\ ( B x. D ) e. CC ) -> ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) = ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. D ) ) ) ) + ( ( B x. D ) ^ 2 ) ) ) |
|
| 23 | 20 21 22 | syl2anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) = ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. D ) ) ) ) + ( ( B x. D ) ^ 2 ) ) ) |
| 24 | 1 6 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A x. D ) e. CC ) |
| 25 | 8 3 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. C ) e. CC ) |
| 26 | binom2sub | |- ( ( ( A x. D ) e. CC /\ ( B x. C ) e. CC ) -> ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) = ( ( ( ( A x. D ) ^ 2 ) - ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) + ( ( B x. C ) ^ 2 ) ) ) |
|
| 27 | 24 25 26 | syl2anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) = ( ( ( ( A x. D ) ^ 2 ) - ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) + ( ( B x. C ) ^ 2 ) ) ) |
| 28 | 23 27 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) ) = ( ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. D ) ) ) ) + ( ( B x. D ) ^ 2 ) ) + ( ( ( ( A x. D ) ^ 2 ) - ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) + ( ( B x. C ) ^ 2 ) ) ) ) |
| 29 | 20 | sqcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. C ) ^ 2 ) e. CC ) |
| 30 | 2cnd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> 2 e. CC ) |
|
| 31 | 20 21 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. C ) x. ( B x. D ) ) e. CC ) |
| 32 | 30 31 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( 2 x. ( ( A x. C ) x. ( B x. D ) ) ) e. CC ) |
| 33 | 29 32 | addcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. D ) ) ) ) e. CC ) |
| 34 | 21 | sqcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B x. D ) ^ 2 ) e. CC ) |
| 35 | 24 | sqcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. D ) ^ 2 ) e. CC ) |
| 36 | 24 25 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. D ) x. ( B x. C ) ) e. CC ) |
| 37 | 30 36 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) e. CC ) |
| 38 | 35 37 | subcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. D ) ^ 2 ) - ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) e. CC ) |
| 39 | 25 | sqcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B x. C ) ^ 2 ) e. CC ) |
| 40 | 33 34 38 39 | add4d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. D ) ) ) ) + ( ( B x. D ) ^ 2 ) ) + ( ( ( ( A x. D ) ^ 2 ) - ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) + ( ( B x. C ) ^ 2 ) ) ) = ( ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. D ) ) ) ) + ( ( ( A x. D ) ^ 2 ) - ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) ) + ( ( ( B x. D ) ^ 2 ) + ( ( B x. C ) ^ 2 ) ) ) ) |
| 41 | mul4r | |- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( A x. C ) x. ( B x. D ) ) = ( ( A x. D ) x. ( B x. C ) ) ) |
|
| 42 | 41 | an4s | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. C ) x. ( B x. D ) ) = ( ( A x. D ) x. ( B x. C ) ) ) |
| 43 | 42 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( 2 x. ( ( A x. C ) x. ( B x. D ) ) ) = ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) |
| 44 | 43 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. D ) ) ) ) = ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) ) |
| 45 | 44 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. D ) ) ) ) + ( ( ( A x. D ) ^ 2 ) - ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) ) = ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) + ( ( ( A x. D ) ^ 2 ) - ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) ) ) |
| 46 | 29 37 35 | ppncand | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) + ( ( ( A x. D ) ^ 2 ) - ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) ) = ( ( ( A x. C ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) ) |
| 47 | 45 46 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. D ) ) ) ) + ( ( ( A x. D ) ^ 2 ) - ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) ) = ( ( ( A x. C ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) ) |
| 48 | 8 6 | sqmuld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B x. D ) ^ 2 ) = ( ( B ^ 2 ) x. ( D ^ 2 ) ) ) |
| 49 | 8 3 | sqmuld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B x. C ) ^ 2 ) = ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) |
| 50 | 48 49 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( B x. D ) ^ 2 ) + ( ( B x. C ) ^ 2 ) ) = ( ( ( B ^ 2 ) x. ( D ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) |
| 51 | 47 50 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. D ) ) ) ) + ( ( ( A x. D ) ^ 2 ) - ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) ) + ( ( ( B x. D ) ^ 2 ) + ( ( B x. C ) ^ 2 ) ) ) = ( ( ( ( A x. C ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) + ( ( ( B ^ 2 ) x. ( D ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) ) |
| 52 | 1 3 | sqmuld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. C ) ^ 2 ) = ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) |
| 53 | 1 6 | sqmuld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. D ) ^ 2 ) = ( ( A ^ 2 ) x. ( D ^ 2 ) ) ) |
| 54 | 52 53 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) = ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( A ^ 2 ) x. ( D ^ 2 ) ) ) ) |
| 55 | 54 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( A x. C ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) + ( ( ( B ^ 2 ) x. ( D ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( A ^ 2 ) x. ( D ^ 2 ) ) ) + ( ( ( B ^ 2 ) x. ( D ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) ) |
| 56 | 51 55 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. D ) ) ) ) + ( ( ( A x. D ) ^ 2 ) - ( 2 x. ( ( A x. D ) x. ( B x. C ) ) ) ) ) + ( ( ( B x. D ) ^ 2 ) + ( ( B x. C ) ^ 2 ) ) ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( A ^ 2 ) x. ( D ^ 2 ) ) ) + ( ( ( B ^ 2 ) x. ( D ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) ) |
| 57 | 28 40 56 | 3eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( A ^ 2 ) x. ( D ^ 2 ) ) ) + ( ( ( B ^ 2 ) x. ( D ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) ) |
| 58 | 18 19 57 | 3eqtr4d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) ) ) |