This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 factors: swap the right factors in the factors of a product of two products. (Contributed by AV, 4-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mul4r | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. B ) x. ( C x. D ) ) = ( ( A x. D ) x. ( C x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | |- ( ( C e. CC /\ D e. CC ) -> ( C x. D ) = ( D x. C ) ) |
|
| 2 | 1 | adantl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( C x. D ) = ( D x. C ) ) |
| 3 | 2 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. B ) x. ( C x. D ) ) = ( ( A x. B ) x. ( D x. C ) ) ) |
| 4 | mul4 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( D e. CC /\ C e. CC ) ) -> ( ( A x. B ) x. ( D x. C ) ) = ( ( A x. D ) x. ( B x. C ) ) ) |
|
| 5 | 4 | ancom2s | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. B ) x. ( D x. C ) ) = ( ( A x. D ) x. ( B x. C ) ) ) |
| 6 | simplr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> B e. CC ) |
|
| 7 | simprl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> C e. CC ) |
|
| 8 | 6 7 | mulcomd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. C ) = ( C x. B ) ) |
| 9 | 8 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. D ) x. ( B x. C ) ) = ( ( A x. D ) x. ( C x. B ) ) ) |
| 10 | 3 5 9 | 3eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. B ) x. ( C x. D ) ) = ( ( A x. D ) x. ( C x. B ) ) ) |