This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Brahmagupta-Fibonacci identity. Express the product of two sums of two squares as a sum of two squares. First result. Remark: The proof uses a different approach than the proof of bhmafibid1cn , and is a little bit shorter. (Contributed by Thierry Arnoux, 1-Feb-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bhmafibid1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( B x. C ) ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR ) |
|
| 2 | 1 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. CC ) |
| 3 | ax-icn | |- _i e. CC |
|
| 4 | 3 | a1i | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> _i e. CC ) |
| 5 | simplr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. RR ) |
|
| 6 | 5 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. CC ) |
| 7 | 4 6 | mulcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( _i x. B ) e. CC ) |
| 8 | 2 7 | addcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A + ( _i x. B ) ) e. CC ) |
| 9 | simprl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR ) |
|
| 10 | 9 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. CC ) |
| 11 | simprr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR ) |
|
| 12 | 11 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. CC ) |
| 13 | 4 12 | mulcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( _i x. D ) e. CC ) |
| 14 | 10 13 | addcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C + ( _i x. D ) ) e. CC ) |
| 15 | 8 14 | mulcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. CC ) |
| 16 | 15 | replimd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) = ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) + ( _i x. ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) ) ) |
| 17 | 8 14 | remuld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) - ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) ) ) |
| 18 | 1 5 | crred | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Re ` ( A + ( _i x. B ) ) ) = A ) |
| 19 | 9 11 | crred | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Re ` ( C + ( _i x. D ) ) ) = C ) |
| 20 | 18 19 | oveq12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) = ( A x. C ) ) |
| 21 | 1 5 | crimd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Im ` ( A + ( _i x. B ) ) ) = B ) |
| 22 | 9 11 | crimd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Im ` ( C + ( _i x. D ) ) ) = D ) |
| 23 | 21 22 | oveq12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) = ( B x. D ) ) |
| 24 | 20 23 | oveq12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) - ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) ) = ( ( A x. C ) - ( B x. D ) ) ) |
| 25 | 17 24 | eqtrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( A x. C ) - ( B x. D ) ) ) |
| 26 | 8 14 | immuld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) + ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) ) ) |
| 27 | 18 22 | oveq12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) = ( A x. D ) ) |
| 28 | 21 19 | oveq12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) = ( B x. C ) ) |
| 29 | 27 28 | oveq12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) + ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) ) = ( ( A x. D ) + ( B x. C ) ) ) |
| 30 | 26 29 | eqtrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( A x. D ) + ( B x. C ) ) ) |
| 31 | 30 | oveq2d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( _i x. ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) = ( _i x. ( ( A x. D ) + ( B x. C ) ) ) ) |
| 32 | 25 31 | oveq12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) + ( _i x. ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) ) = ( ( ( A x. C ) - ( B x. D ) ) + ( _i x. ( ( A x. D ) + ( B x. C ) ) ) ) ) |
| 33 | 16 32 | eqtrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) = ( ( ( A x. C ) - ( B x. D ) ) + ( _i x. ( ( A x. D ) + ( B x. C ) ) ) ) ) |
| 34 | 33 | fveq2d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( abs ` ( ( ( A x. C ) - ( B x. D ) ) + ( _i x. ( ( A x. D ) + ( B x. C ) ) ) ) ) ) |
| 35 | 34 | oveq1d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( abs ` ( ( ( A x. C ) - ( B x. D ) ) + ( _i x. ( ( A x. D ) + ( B x. C ) ) ) ) ) ^ 2 ) ) |
| 36 | 8 14 | absmuld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( abs ` ( A + ( _i x. B ) ) ) x. ( abs ` ( C + ( _i x. D ) ) ) ) ) |
| 37 | 36 | oveq1d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( ( abs ` ( A + ( _i x. B ) ) ) x. ( abs ` ( C + ( _i x. D ) ) ) ) ^ 2 ) ) |
| 38 | 8 | abscld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( abs ` ( A + ( _i x. B ) ) ) e. RR ) |
| 39 | 38 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( abs ` ( A + ( _i x. B ) ) ) e. CC ) |
| 40 | 14 | abscld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( abs ` ( C + ( _i x. D ) ) ) e. RR ) |
| 41 | 40 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( abs ` ( C + ( _i x. D ) ) ) e. CC ) |
| 42 | 39 41 | sqmuld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( abs ` ( A + ( _i x. B ) ) ) x. ( abs ` ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) x. ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) ) |
| 43 | absreimsq | |- ( ( A e. RR /\ B e. RR ) -> ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
|
| 44 | absreimsq | |- ( ( C e. RR /\ D e. RR ) -> ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
|
| 45 | 43 44 | oveqan12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) x. ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 46 | 37 42 45 | 3eqtrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 47 | 1 9 | remulcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A x. C ) e. RR ) |
| 48 | 5 11 | remulcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B x. D ) e. RR ) |
| 49 | 47 48 | resubcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A x. C ) - ( B x. D ) ) e. RR ) |
| 50 | 1 11 | remulcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A x. D ) e. RR ) |
| 51 | 5 9 | remulcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B x. C ) e. RR ) |
| 52 | 50 51 | readdcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A x. D ) + ( B x. C ) ) e. RR ) |
| 53 | absreimsq | |- ( ( ( ( A x. C ) - ( B x. D ) ) e. RR /\ ( ( A x. D ) + ( B x. C ) ) e. RR ) -> ( ( abs ` ( ( ( A x. C ) - ( B x. D ) ) + ( _i x. ( ( A x. D ) + ( B x. C ) ) ) ) ) ^ 2 ) = ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( B x. C ) ) ^ 2 ) ) ) |
|
| 54 | 49 52 53 | syl2anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( abs ` ( ( ( A x. C ) - ( B x. D ) ) + ( _i x. ( ( A x. D ) + ( B x. C ) ) ) ) ) ^ 2 ) = ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( B x. C ) ) ^ 2 ) ) ) |
| 55 | 35 46 54 | 3eqtr3d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( B x. C ) ) ^ 2 ) ) ) |