This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005) (Revised by Mario Carneiro, 5-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bccmpl | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( N _C K ) = ( N _C ( N - K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcval2 | |- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
|
| 2 | fznn0sub2 | |- ( K e. ( 0 ... N ) -> ( N - K ) e. ( 0 ... N ) ) |
|
| 3 | bcval2 | |- ( ( N - K ) e. ( 0 ... N ) -> ( N _C ( N - K ) ) = ( ( ! ` N ) / ( ( ! ` ( N - ( N - K ) ) ) x. ( ! ` ( N - K ) ) ) ) ) |
|
| 4 | 2 3 | syl | |- ( K e. ( 0 ... N ) -> ( N _C ( N - K ) ) = ( ( ! ` N ) / ( ( ! ` ( N - ( N - K ) ) ) x. ( ! ` ( N - K ) ) ) ) ) |
| 5 | elfznn0 | |- ( ( N - K ) e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
|
| 6 | 5 | faccld | |- ( ( N - K ) e. ( 0 ... N ) -> ( ! ` ( N - K ) ) e. NN ) |
| 7 | 6 | nncnd | |- ( ( N - K ) e. ( 0 ... N ) -> ( ! ` ( N - K ) ) e. CC ) |
| 8 | 2 7 | syl | |- ( K e. ( 0 ... N ) -> ( ! ` ( N - K ) ) e. CC ) |
| 9 | elfznn0 | |- ( K e. ( 0 ... N ) -> K e. NN0 ) |
|
| 10 | 9 | faccld | |- ( K e. ( 0 ... N ) -> ( ! ` K ) e. NN ) |
| 11 | 10 | nncnd | |- ( K e. ( 0 ... N ) -> ( ! ` K ) e. CC ) |
| 12 | 8 11 | mulcomd | |- ( K e. ( 0 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) = ( ( ! ` K ) x. ( ! ` ( N - K ) ) ) ) |
| 13 | elfz3nn0 | |- ( K e. ( 0 ... N ) -> N e. NN0 ) |
|
| 14 | elfzelz | |- ( K e. ( 0 ... N ) -> K e. ZZ ) |
|
| 15 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 16 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 17 | nncan | |- ( ( N e. CC /\ K e. CC ) -> ( N - ( N - K ) ) = K ) |
|
| 18 | 15 16 17 | syl2an | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( N - ( N - K ) ) = K ) |
| 19 | 13 14 18 | syl2anc | |- ( K e. ( 0 ... N ) -> ( N - ( N - K ) ) = K ) |
| 20 | 19 | fveq2d | |- ( K e. ( 0 ... N ) -> ( ! ` ( N - ( N - K ) ) ) = ( ! ` K ) ) |
| 21 | 20 | oveq1d | |- ( K e. ( 0 ... N ) -> ( ( ! ` ( N - ( N - K ) ) ) x. ( ! ` ( N - K ) ) ) = ( ( ! ` K ) x. ( ! ` ( N - K ) ) ) ) |
| 22 | 12 21 | eqtr4d | |- ( K e. ( 0 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) = ( ( ! ` ( N - ( N - K ) ) ) x. ( ! ` ( N - K ) ) ) ) |
| 23 | 22 | oveq2d | |- ( K e. ( 0 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( ! ` N ) / ( ( ! ` ( N - ( N - K ) ) ) x. ( ! ` ( N - K ) ) ) ) ) |
| 24 | 4 23 | eqtr4d | |- ( K e. ( 0 ... N ) -> ( N _C ( N - K ) ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 25 | 1 24 | eqtr4d | |- ( K e. ( 0 ... N ) -> ( N _C K ) = ( N _C ( N - K ) ) ) |
| 26 | 25 | adantl | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ K e. ( 0 ... N ) ) -> ( N _C K ) = ( N _C ( N - K ) ) ) |
| 27 | bcval3 | |- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) |
|
| 28 | simp1 | |- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> N e. NN0 ) |
|
| 29 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 30 | zsubcl | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( N - K ) e. ZZ ) |
|
| 31 | 29 30 | sylan | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( N - K ) e. ZZ ) |
| 32 | 31 | 3adant3 | |- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> ( N - K ) e. ZZ ) |
| 33 | fznn0sub2 | |- ( ( N - K ) e. ( 0 ... N ) -> ( N - ( N - K ) ) e. ( 0 ... N ) ) |
|
| 34 | 18 | eleq1d | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( ( N - ( N - K ) ) e. ( 0 ... N ) <-> K e. ( 0 ... N ) ) ) |
| 35 | 33 34 | imbitrid | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( ( N - K ) e. ( 0 ... N ) -> K e. ( 0 ... N ) ) ) |
| 36 | 35 | con3d | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( -. K e. ( 0 ... N ) -> -. ( N - K ) e. ( 0 ... N ) ) ) |
| 37 | 36 | 3impia | |- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> -. ( N - K ) e. ( 0 ... N ) ) |
| 38 | bcval3 | |- ( ( N e. NN0 /\ ( N - K ) e. ZZ /\ -. ( N - K ) e. ( 0 ... N ) ) -> ( N _C ( N - K ) ) = 0 ) |
|
| 39 | 28 32 37 38 | syl3anc | |- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> ( N _C ( N - K ) ) = 0 ) |
| 40 | 27 39 | eqtr4d | |- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = ( N _C ( N - K ) ) ) |
| 41 | 40 | 3expa | |- ( ( ( N e. NN0 /\ K e. ZZ ) /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = ( N _C ( N - K ) ) ) |
| 42 | 26 41 | pm2.61dan | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( N _C K ) = ( N _C ( N - K ) ) ) |