This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compute the binomial coefficient " ( N + 1 ) choose 2 " from " N choose 2 ": N + ( N 2 ) = ( (N+1) 2 ). (Contributed by Alexander van der Vekens, 8-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcn2p1 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + ( 𝑁 C 2 ) ) = ( ( 𝑁 + 1 ) C 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 2 | 2z | ⊢ 2 ∈ ℤ | |
| 3 | bccl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ ) → ( 𝑁 C 2 ) ∈ ℕ0 ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 2 ) ∈ ℕ0 ) |
| 5 | 4 | nn0cnd | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 2 ) ∈ ℂ ) |
| 6 | 1 5 | addcomd | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + ( 𝑁 C 2 ) ) = ( ( 𝑁 C 2 ) + 𝑁 ) ) |
| 7 | bcn1 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 1 ) = 𝑁 ) | |
| 8 | 1e2m1 | ⊢ 1 = ( 2 − 1 ) | |
| 9 | 8 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 1 = ( 2 − 1 ) ) |
| 10 | 9 | oveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 1 ) = ( 𝑁 C ( 2 − 1 ) ) ) |
| 11 | 7 10 | eqtr3d | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 = ( 𝑁 C ( 2 − 1 ) ) ) |
| 12 | 11 | oveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 C 2 ) + 𝑁 ) = ( ( 𝑁 C 2 ) + ( 𝑁 C ( 2 − 1 ) ) ) ) |
| 13 | bcpasc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ ) → ( ( 𝑁 C 2 ) + ( 𝑁 C ( 2 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 2 ) ) | |
| 14 | 2 13 | mpan2 | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 C 2 ) + ( 𝑁 C ( 2 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 2 ) ) |
| 15 | 6 12 14 | 3eqtrd | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + ( 𝑁 C 2 ) ) = ( ( 𝑁 + 1 ) C 2 ) ) |