This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This theorem derives ax-dc using ax-ac and ax-inf . Thus,AC impliesDC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axdc | |- ( ( E. y E. z y x z /\ ran x C_ dom x ) -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | |- ( w = z -> ( u x w <-> u x z ) ) |
|
| 2 | 1 | cbvabv | |- { w | u x w } = { z | u x z } |
| 3 | breq1 | |- ( u = v -> ( u x z <-> v x z ) ) |
|
| 4 | 3 | abbidv | |- ( u = v -> { z | u x z } = { z | v x z } ) |
| 5 | 2 4 | eqtrid | |- ( u = v -> { w | u x w } = { z | v x z } ) |
| 6 | 5 | fveq2d | |- ( u = v -> ( g ` { w | u x w } ) = ( g ` { z | v x z } ) ) |
| 7 | 6 | cbvmptv | |- ( u e. _V |-> ( g ` { w | u x w } ) ) = ( v e. _V |-> ( g ` { z | v x z } ) ) |
| 8 | rdgeq1 | |- ( ( u e. _V |-> ( g ` { w | u x w } ) ) = ( v e. _V |-> ( g ` { z | v x z } ) ) -> rec ( ( u e. _V |-> ( g ` { w | u x w } ) ) , y ) = rec ( ( v e. _V |-> ( g ` { z | v x z } ) ) , y ) ) |
|
| 9 | 7 8 | ax-mp | |- rec ( ( u e. _V |-> ( g ` { w | u x w } ) ) , y ) = rec ( ( v e. _V |-> ( g ` { z | v x z } ) ) , y ) |
| 10 | 9 | reseq1i | |- ( rec ( ( u e. _V |-> ( g ` { w | u x w } ) ) , y ) |` _om ) = ( rec ( ( v e. _V |-> ( g ` { z | v x z } ) ) , y ) |` _om ) |
| 11 | 10 | axdclem2 | |- ( E. z y x z -> ( ran x C_ dom x -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) |
| 12 | 11 | exlimiv | |- ( E. y E. z y x z -> ( ran x C_ dom x -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) |
| 13 | 12 | imp | |- ( ( E. y E. z y x z /\ ran x C_ dom x ) -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) |