This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl be used later. Instead, in most cases use readdcl . (Contributed by NM, 31-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axaddrcl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal | |- ( A e. RR <-> E. x e. R. <. x , 0R >. = A ) |
|
| 2 | elreal | |- ( B e. RR <-> E. y e. R. <. y , 0R >. = B ) |
|
| 3 | oveq1 | |- ( <. x , 0R >. = A -> ( <. x , 0R >. + <. y , 0R >. ) = ( A + <. y , 0R >. ) ) |
|
| 4 | 3 | eleq1d | |- ( <. x , 0R >. = A -> ( ( <. x , 0R >. + <. y , 0R >. ) e. RR <-> ( A + <. y , 0R >. ) e. RR ) ) |
| 5 | oveq2 | |- ( <. y , 0R >. = B -> ( A + <. y , 0R >. ) = ( A + B ) ) |
|
| 6 | 5 | eleq1d | |- ( <. y , 0R >. = B -> ( ( A + <. y , 0R >. ) e. RR <-> ( A + B ) e. RR ) ) |
| 7 | addresr | |- ( ( x e. R. /\ y e. R. ) -> ( <. x , 0R >. + <. y , 0R >. ) = <. ( x +R y ) , 0R >. ) |
|
| 8 | addclsr | |- ( ( x e. R. /\ y e. R. ) -> ( x +R y ) e. R. ) |
|
| 9 | opelreal | |- ( <. ( x +R y ) , 0R >. e. RR <-> ( x +R y ) e. R. ) |
|
| 10 | 8 9 | sylibr | |- ( ( x e. R. /\ y e. R. ) -> <. ( x +R y ) , 0R >. e. RR ) |
| 11 | 7 10 | eqeltrd | |- ( ( x e. R. /\ y e. R. ) -> ( <. x , 0R >. + <. y , 0R >. ) e. RR ) |
| 12 | 1 2 4 6 11 | 2gencl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |