This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl be used later. Instead, in most cases use readdcl . (Contributed by NM, 31-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axaddrcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal | ⊢ ( 𝐴 ∈ ℝ ↔ ∃ 𝑥 ∈ R 〈 𝑥 , 0R 〉 = 𝐴 ) | |
| 2 | elreal | ⊢ ( 𝐵 ∈ ℝ ↔ ∃ 𝑦 ∈ R 〈 𝑦 , 0R 〉 = 𝐵 ) | |
| 3 | oveq1 | ⊢ ( 〈 𝑥 , 0R 〉 = 𝐴 → ( 〈 𝑥 , 0R 〉 + 〈 𝑦 , 0R 〉 ) = ( 𝐴 + 〈 𝑦 , 0R 〉 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 〈 𝑥 , 0R 〉 = 𝐴 → ( ( 〈 𝑥 , 0R 〉 + 〈 𝑦 , 0R 〉 ) ∈ ℝ ↔ ( 𝐴 + 〈 𝑦 , 0R 〉 ) ∈ ℝ ) ) |
| 5 | oveq2 | ⊢ ( 〈 𝑦 , 0R 〉 = 𝐵 → ( 𝐴 + 〈 𝑦 , 0R 〉 ) = ( 𝐴 + 𝐵 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 〈 𝑦 , 0R 〉 = 𝐵 → ( ( 𝐴 + 〈 𝑦 , 0R 〉 ) ∈ ℝ ↔ ( 𝐴 + 𝐵 ) ∈ ℝ ) ) |
| 7 | addresr | ⊢ ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) → ( 〈 𝑥 , 0R 〉 + 〈 𝑦 , 0R 〉 ) = 〈 ( 𝑥 +R 𝑦 ) , 0R 〉 ) | |
| 8 | addclsr | ⊢ ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) → ( 𝑥 +R 𝑦 ) ∈ R ) | |
| 9 | opelreal | ⊢ ( 〈 ( 𝑥 +R 𝑦 ) , 0R 〉 ∈ ℝ ↔ ( 𝑥 +R 𝑦 ) ∈ R ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) → 〈 ( 𝑥 +R 𝑦 ) , 0R 〉 ∈ ℝ ) |
| 11 | 7 10 | eqeltrd | ⊢ ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) → ( 〈 𝑥 , 0R 〉 + 〈 𝑦 , 0R 〉 ) ∈ ℝ ) |
| 12 | 1 2 4 6 11 | 2gencl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |