This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "At least two sets exist" expressed in the form of dtru is logically equivalent to the same expressed in a form similar to ax6e if dtru is false implies u = v . ax6e2ndeq is derived from ax6e2ndeqVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax6e2ndeq | |- ( ( -. A. x x = y \/ u = v ) <-> E. x E. y ( x = u /\ y = v ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6e2nd | |- ( -. A. x x = y -> E. x E. y ( x = u /\ y = v ) ) |
|
| 2 | ax6e2eq | |- ( A. x x = y -> ( u = v -> E. x E. y ( x = u /\ y = v ) ) ) |
|
| 3 | 1 | a1d | |- ( -. A. x x = y -> ( u = v -> E. x E. y ( x = u /\ y = v ) ) ) |
| 4 | 2 3 | pm2.61i | |- ( u = v -> E. x E. y ( x = u /\ y = v ) ) |
| 5 | 1 4 | jaoi | |- ( ( -. A. x x = y \/ u = v ) -> E. x E. y ( x = u /\ y = v ) ) |
| 6 | olc | |- ( u = v -> ( -. A. x x = y \/ u = v ) ) |
|
| 7 | 6 | a1d | |- ( u = v -> ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) ) |
| 8 | excom | |- ( E. x E. y ( x = u /\ y = v ) <-> E. y E. x ( x = u /\ y = v ) ) |
|
| 9 | neeq1 | |- ( x = u -> ( x =/= v <-> u =/= v ) ) |
|
| 10 | 9 | biimprcd | |- ( u =/= v -> ( x = u -> x =/= v ) ) |
| 11 | 10 | adantrd | |- ( u =/= v -> ( ( x = u /\ y = v ) -> x =/= v ) ) |
| 12 | simpr | |- ( ( x = u /\ y = v ) -> y = v ) |
|
| 13 | 12 | a1i | |- ( u =/= v -> ( ( x = u /\ y = v ) -> y = v ) ) |
| 14 | neeq2 | |- ( y = v -> ( x =/= y <-> x =/= v ) ) |
|
| 15 | 14 | biimprcd | |- ( x =/= v -> ( y = v -> x =/= y ) ) |
| 16 | 11 13 15 | syl6c | |- ( u =/= v -> ( ( x = u /\ y = v ) -> x =/= y ) ) |
| 17 | sp | |- ( A. x x = y -> x = y ) |
|
| 18 | 17 | necon3ai | |- ( x =/= y -> -. A. x x = y ) |
| 19 | 16 18 | syl6 | |- ( u =/= v -> ( ( x = u /\ y = v ) -> -. A. x x = y ) ) |
| 20 | 19 | eximdv | |- ( u =/= v -> ( E. x ( x = u /\ y = v ) -> E. x -. A. x x = y ) ) |
| 21 | nfnae | |- F/ x -. A. x x = y |
|
| 22 | 21 | 19.9 | |- ( E. x -. A. x x = y <-> -. A. x x = y ) |
| 23 | 20 22 | imbitrdi | |- ( u =/= v -> ( E. x ( x = u /\ y = v ) -> -. A. x x = y ) ) |
| 24 | 23 | eximdv | |- ( u =/= v -> ( E. y E. x ( x = u /\ y = v ) -> E. y -. A. x x = y ) ) |
| 25 | 8 24 | biimtrid | |- ( u =/= v -> ( E. x E. y ( x = u /\ y = v ) -> E. y -. A. x x = y ) ) |
| 26 | nfnae | |- F/ y -. A. x x = y |
|
| 27 | 26 | 19.9 | |- ( E. y -. A. x x = y <-> -. A. x x = y ) |
| 28 | 25 27 | imbitrdi | |- ( u =/= v -> ( E. x E. y ( x = u /\ y = v ) -> -. A. x x = y ) ) |
| 29 | orc | |- ( -. A. x x = y -> ( -. A. x x = y \/ u = v ) ) |
|
| 30 | 28 29 | syl6 | |- ( u =/= v -> ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) ) |
| 31 | 7 30 | pm2.61ine | |- ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) |
| 32 | 5 31 | impbii | |- ( ( -. A. x x = y \/ u = v ) <-> E. x E. y ( x = u /\ y = v ) ) |