This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate form of ax6e for non-distinct x , y and u = v . ax6e2eq is derived from ax6e2eqVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax6e2eq | |- ( A. x x = y -> ( u = v -> E. x E. y ( x = u /\ y = v ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6ev | |- E. x x = u |
|
| 2 | hbae | |- ( A. x x = y -> A. x A. x x = y ) |
|
| 3 | ax7 | |- ( x = y -> ( x = u -> y = u ) ) |
|
| 4 | 3 | sps | |- ( A. x x = y -> ( x = u -> y = u ) ) |
| 5 | 4 | ancld | |- ( A. x x = y -> ( x = u -> ( x = u /\ y = u ) ) ) |
| 6 | 2 5 | eximdh | |- ( A. x x = y -> ( E. x x = u -> E. x ( x = u /\ y = u ) ) ) |
| 7 | 1 6 | mpi | |- ( A. x x = y -> E. x ( x = u /\ y = u ) ) |
| 8 | 7 | axc4i | |- ( A. x x = y -> A. x E. x ( x = u /\ y = u ) ) |
| 9 | axc11 | |- ( A. x x = y -> ( A. x E. x ( x = u /\ y = u ) -> A. y E. x ( x = u /\ y = u ) ) ) |
|
| 10 | 8 9 | mpd | |- ( A. x x = y -> A. y E. x ( x = u /\ y = u ) ) |
| 11 | 19.2 | |- ( A. y E. x ( x = u /\ y = u ) -> E. y E. x ( x = u /\ y = u ) ) |
|
| 12 | 10 11 | syl | |- ( A. x x = y -> E. y E. x ( x = u /\ y = u ) ) |
| 13 | excomim | |- ( E. y E. x ( x = u /\ y = u ) -> E. x E. y ( x = u /\ y = u ) ) |
|
| 14 | 12 13 | syl | |- ( A. x x = y -> E. x E. y ( x = u /\ y = u ) ) |
| 15 | equtrr | |- ( u = v -> ( y = u -> y = v ) ) |
|
| 16 | 15 | anim2d | |- ( u = v -> ( ( x = u /\ y = u ) -> ( x = u /\ y = v ) ) ) |
| 17 | 16 | 2eximdv | |- ( u = v -> ( E. x E. y ( x = u /\ y = u ) -> E. x E. y ( x = u /\ y = v ) ) ) |
| 18 | 14 17 | syl5com | |- ( A. x x = y -> ( u = v -> E. x E. y ( x = u /\ y = v ) ) ) |