This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If at least two sets exist ( dtru ), then the same is true expressed in an alternate form similar to the form of ax6e . ax6e2nd is derived from ax6e2ndVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax6e2nd | |- ( -. A. x x = y -> E. x E. y ( x = u /\ y = v ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- u e. _V |
|
| 2 | ax6e | |- E. y y = v |
|
| 3 | 1 2 | pm3.2i | |- ( u e. _V /\ E. y y = v ) |
| 4 | 19.42v | |- ( E. y ( u e. _V /\ y = v ) <-> ( u e. _V /\ E. y y = v ) ) |
|
| 5 | 4 | biimpri | |- ( ( u e. _V /\ E. y y = v ) -> E. y ( u e. _V /\ y = v ) ) |
| 6 | 3 5 | ax-mp | |- E. y ( u e. _V /\ y = v ) |
| 7 | isset | |- ( u e. _V <-> E. x x = u ) |
|
| 8 | 7 | anbi1i | |- ( ( u e. _V /\ y = v ) <-> ( E. x x = u /\ y = v ) ) |
| 9 | 8 | exbii | |- ( E. y ( u e. _V /\ y = v ) <-> E. y ( E. x x = u /\ y = v ) ) |
| 10 | 6 9 | mpbi | |- E. y ( E. x x = u /\ y = v ) |
| 11 | id | |- ( -. A. x x = y -> -. A. x x = y ) |
|
| 12 | hbnae | |- ( -. A. x x = y -> A. y -. A. x x = y ) |
|
| 13 | hbn1 | |- ( -. A. x x = y -> A. x -. A. x x = y ) |
|
| 14 | ax-5 | |- ( z = v -> A. x z = v ) |
|
| 15 | ax-5 | |- ( y = v -> A. z y = v ) |
|
| 16 | id | |- ( z = y -> z = y ) |
|
| 17 | equequ1 | |- ( z = y -> ( z = v <-> y = v ) ) |
|
| 18 | 16 17 | syl | |- ( z = y -> ( z = v <-> y = v ) ) |
| 19 | 18 | idiALT | |- ( z = y -> ( z = v <-> y = v ) ) |
| 20 | 14 15 19 | dvelimh | |- ( -. A. x x = y -> ( y = v -> A. x y = v ) ) |
| 21 | 11 20 | syl | |- ( -. A. x x = y -> ( y = v -> A. x y = v ) ) |
| 22 | 21 | idiALT | |- ( -. A. x x = y -> ( y = v -> A. x y = v ) ) |
| 23 | 22 | alimi | |- ( A. x -. A. x x = y -> A. x ( y = v -> A. x y = v ) ) |
| 24 | 13 23 | syl | |- ( -. A. x x = y -> A. x ( y = v -> A. x y = v ) ) |
| 25 | 11 24 | syl | |- ( -. A. x x = y -> A. x ( y = v -> A. x y = v ) ) |
| 26 | 19.41rg | |- ( A. x ( y = v -> A. x y = v ) -> ( ( E. x x = u /\ y = v ) -> E. x ( x = u /\ y = v ) ) ) |
|
| 27 | 25 26 | syl | |- ( -. A. x x = y -> ( ( E. x x = u /\ y = v ) -> E. x ( x = u /\ y = v ) ) ) |
| 28 | 27 | idiALT | |- ( -. A. x x = y -> ( ( E. x x = u /\ y = v ) -> E. x ( x = u /\ y = v ) ) ) |
| 29 | 28 | alimi | |- ( A. y -. A. x x = y -> A. y ( ( E. x x = u /\ y = v ) -> E. x ( x = u /\ y = v ) ) ) |
| 30 | 12 29 | syl | |- ( -. A. x x = y -> A. y ( ( E. x x = u /\ y = v ) -> E. x ( x = u /\ y = v ) ) ) |
| 31 | 11 30 | syl | |- ( -. A. x x = y -> A. y ( ( E. x x = u /\ y = v ) -> E. x ( x = u /\ y = v ) ) ) |
| 32 | exim | |- ( A. y ( ( E. x x = u /\ y = v ) -> E. x ( x = u /\ y = v ) ) -> ( E. y ( E. x x = u /\ y = v ) -> E. y E. x ( x = u /\ y = v ) ) ) |
|
| 33 | 31 32 | syl | |- ( -. A. x x = y -> ( E. y ( E. x x = u /\ y = v ) -> E. y E. x ( x = u /\ y = v ) ) ) |
| 34 | pm2.27 | |- ( E. y ( E. x x = u /\ y = v ) -> ( ( E. y ( E. x x = u /\ y = v ) -> E. y E. x ( x = u /\ y = v ) ) -> E. y E. x ( x = u /\ y = v ) ) ) |
|
| 35 | 10 33 34 | mpsyl | |- ( -. A. x x = y -> E. y E. x ( x = u /\ y = v ) ) |
| 36 | excomim | |- ( E. y E. x ( x = u /\ y = v ) -> E. x E. y ( x = u /\ y = v ) ) |
|
| 37 | 35 36 | syl | |- ( -. A. x x = y -> E. x E. y ( x = u /\ y = v ) ) |
| 38 | 37 | idiALT | |- ( -. A. x x = y -> E. x E. y ( x = u /\ y = v ) ) |