This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "At least two sets exist" expressed in the form of dtru is logically equivalent to the same expressed in a form similar to ax6e if dtru is false implies u = v . ax6e2ndeq is derived from ax6e2ndeqVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax6e2ndeq | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6e2nd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) | |
| 2 | ax6e2eq | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) | |
| 3 | 1 | a1d | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 4 | 2 3 | pm2.61i | ⊢ ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 5 | 1 4 | jaoi | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 6 | olc | ⊢ ( 𝑢 = 𝑣 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) | |
| 7 | 6 | a1d | ⊢ ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) |
| 8 | excom | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) | |
| 9 | neeq1 | ⊢ ( 𝑥 = 𝑢 → ( 𝑥 ≠ 𝑣 ↔ 𝑢 ≠ 𝑣 ) ) | |
| 10 | 9 | biimprcd | ⊢ ( 𝑢 ≠ 𝑣 → ( 𝑥 = 𝑢 → 𝑥 ≠ 𝑣 ) ) |
| 11 | 10 | adantrd | ⊢ ( 𝑢 ≠ 𝑣 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑥 ≠ 𝑣 ) ) |
| 12 | simpr | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑦 = 𝑣 ) | |
| 13 | 12 | a1i | ⊢ ( 𝑢 ≠ 𝑣 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑦 = 𝑣 ) ) |
| 14 | neeq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝑥 ≠ 𝑦 ↔ 𝑥 ≠ 𝑣 ) ) | |
| 15 | 14 | biimprcd | ⊢ ( 𝑥 ≠ 𝑣 → ( 𝑦 = 𝑣 → 𝑥 ≠ 𝑦 ) ) |
| 16 | 11 13 15 | syl6c | ⊢ ( 𝑢 ≠ 𝑣 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑥 ≠ 𝑦 ) ) |
| 17 | sp | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 18 | 17 | necon3ai | ⊢ ( 𝑥 ≠ 𝑦 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 19 | 16 18 | syl6 | ⊢ ( 𝑢 ≠ 𝑣 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 20 | 19 | eximdv | ⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 21 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 22 | 21 | 19.9 | ⊢ ( ∃ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ↔ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 23 | 20 22 | imbitrdi | ⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 24 | 23 | eximdv | ⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 25 | 8 24 | biimtrid | ⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 26 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 27 | 26 | 19.9 | ⊢ ( ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ↔ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 28 | 25 27 | imbitrdi | ⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 29 | orc | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) | |
| 30 | 28 29 | syl6 | ⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) |
| 31 | 7 30 | pm2.61ine | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) |
| 32 | 5 31 | impbii | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |