This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for double substitution 2sb5 without distinct x , y requirement. 2sb5nd is derived from 2sb5ndVD . (Contributed by Alan Sare, 30-Apr-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2sb5nd | |- ( ( -. A. x x = y \/ u = v ) -> ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6e2ndeq | |- ( ( -. A. x x = y \/ u = v ) <-> E. x E. y ( x = u /\ y = v ) ) |
|
| 2 | anabs5 | |- ( ( E. x E. y ( x = u /\ y = v ) /\ ( E. x E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) <-> ( E. x E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) |
|
| 3 | 2pm13.193 | |- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( ( x = u /\ y = v ) /\ ph ) ) |
|
| 4 | 3 | exbii | |- ( E. y ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> E. y ( ( x = u /\ y = v ) /\ ph ) ) |
| 5 | nfs1v | |- F/ y [ v / y ] ph |
|
| 6 | 5 | nfsb | |- F/ y [ u / x ] [ v / y ] ph |
| 7 | 6 | 19.41 | |- ( E. y ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) |
| 8 | 4 7 | bitr3i | |- ( E. y ( ( x = u /\ y = v ) /\ ph ) <-> ( E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) |
| 9 | 8 | exbii | |- ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) <-> E. x ( E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) |
| 10 | nfs1v | |- F/ x [ u / x ] [ v / y ] ph |
|
| 11 | 10 | 19.41 | |- ( E. x ( E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( E. x E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) |
| 12 | 9 11 | bitr2i | |- ( ( E. x E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) |
| 13 | 12 | anbi2i | |- ( ( E. x E. y ( x = u /\ y = v ) /\ ( E. x E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) <-> ( E. x E. y ( x = u /\ y = v ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) |
| 14 | 2 13 | bitr3i | |- ( ( E. x E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( E. x E. y ( x = u /\ y = v ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) |
| 15 | pm5.32 | |- ( ( E. x E. y ( x = u /\ y = v ) -> ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) <-> ( ( E. x E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( E. x E. y ( x = u /\ y = v ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) ) |
|
| 16 | 14 15 | mpbir | |- ( E. x E. y ( x = u /\ y = v ) -> ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) |
| 17 | 1 16 | sylbi | |- ( ( -. A. x x = y \/ u = v ) -> ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) |