This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of modular law pmod1i that holds in a Hilbert lattice, when an element meets an atom. (Contributed by NM, 2-Sep-2012) (Revised by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atmod.b | |- B = ( Base ` K ) |
|
| atmod.l | |- .<_ = ( le ` K ) |
||
| atmod.j | |- .\/ = ( join ` K ) |
||
| atmod.m | |- ./\ = ( meet ` K ) |
||
| atmod.a | |- A = ( Atoms ` K ) |
||
| Assertion | atmod1i1m | |- ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) -> ( ( X ./\ P ) .\/ ( Y ./\ Z ) ) = ( ( ( X ./\ P ) .\/ Y ) ./\ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atmod.b | |- B = ( Base ` K ) |
|
| 2 | atmod.l | |- .<_ = ( le ` K ) |
|
| 3 | atmod.j | |- .\/ = ( join ` K ) |
|
| 4 | atmod.m | |- ./\ = ( meet ` K ) |
|
| 5 | atmod.a | |- A = ( Atoms ` K ) |
|
| 6 | simpl1l | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) e. A ) -> K e. HL ) |
|
| 7 | simpr | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) e. A ) -> ( X ./\ P ) e. A ) |
|
| 8 | simpl22 | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) e. A ) -> Y e. B ) |
|
| 9 | simpl23 | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) e. A ) -> Z e. B ) |
|
| 10 | simpl3 | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) e. A ) -> ( X ./\ P ) .<_ Z ) |
|
| 11 | 1 2 3 4 5 | atmod1i1 | |- ( ( K e. HL /\ ( ( X ./\ P ) e. A /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) -> ( ( X ./\ P ) .\/ ( Y ./\ Z ) ) = ( ( ( X ./\ P ) .\/ Y ) ./\ Z ) ) |
| 12 | 6 7 8 9 10 11 | syl131anc | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) e. A ) -> ( ( X ./\ P ) .\/ ( Y ./\ Z ) ) = ( ( ( X ./\ P ) .\/ Y ) ./\ Z ) ) |
| 13 | simp1l | |- ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) -> K e. HL ) |
|
| 14 | hlol | |- ( K e. HL -> K e. OL ) |
|
| 15 | 13 14 | syl | |- ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) -> K e. OL ) |
| 16 | 15 | adantr | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) = ( 0. ` K ) ) -> K e. OL ) |
| 17 | 13 | hllatd | |- ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) -> K e. Lat ) |
| 18 | 17 | adantr | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) = ( 0. ` K ) ) -> K e. Lat ) |
| 19 | simpl22 | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) = ( 0. ` K ) ) -> Y e. B ) |
|
| 20 | simpl23 | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) = ( 0. ` K ) ) -> Z e. B ) |
|
| 21 | 1 4 | latmcl | |- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y ./\ Z ) e. B ) |
| 22 | 18 19 20 21 | syl3anc | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) = ( 0. ` K ) ) -> ( Y ./\ Z ) e. B ) |
| 23 | eqid | |- ( 0. ` K ) = ( 0. ` K ) |
|
| 24 | 1 3 23 | olj02 | |- ( ( K e. OL /\ ( Y ./\ Z ) e. B ) -> ( ( 0. ` K ) .\/ ( Y ./\ Z ) ) = ( Y ./\ Z ) ) |
| 25 | 16 22 24 | syl2anc | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) = ( 0. ` K ) ) -> ( ( 0. ` K ) .\/ ( Y ./\ Z ) ) = ( Y ./\ Z ) ) |
| 26 | oveq1 | |- ( ( X ./\ P ) = ( 0. ` K ) -> ( ( X ./\ P ) .\/ ( Y ./\ Z ) ) = ( ( 0. ` K ) .\/ ( Y ./\ Z ) ) ) |
|
| 27 | 26 | adantl | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) = ( 0. ` K ) ) -> ( ( X ./\ P ) .\/ ( Y ./\ Z ) ) = ( ( 0. ` K ) .\/ ( Y ./\ Z ) ) ) |
| 28 | oveq1 | |- ( ( X ./\ P ) = ( 0. ` K ) -> ( ( X ./\ P ) .\/ Y ) = ( ( 0. ` K ) .\/ Y ) ) |
|
| 29 | 28 | adantl | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) = ( 0. ` K ) ) -> ( ( X ./\ P ) .\/ Y ) = ( ( 0. ` K ) .\/ Y ) ) |
| 30 | 1 3 23 | olj02 | |- ( ( K e. OL /\ Y e. B ) -> ( ( 0. ` K ) .\/ Y ) = Y ) |
| 31 | 16 19 30 | syl2anc | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) = ( 0. ` K ) ) -> ( ( 0. ` K ) .\/ Y ) = Y ) |
| 32 | 29 31 | eqtrd | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) = ( 0. ` K ) ) -> ( ( X ./\ P ) .\/ Y ) = Y ) |
| 33 | 32 | oveq1d | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) = ( 0. ` K ) ) -> ( ( ( X ./\ P ) .\/ Y ) ./\ Z ) = ( Y ./\ Z ) ) |
| 34 | 25 27 33 | 3eqtr4d | |- ( ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) /\ ( X ./\ P ) = ( 0. ` K ) ) -> ( ( X ./\ P ) .\/ ( Y ./\ Z ) ) = ( ( ( X ./\ P ) .\/ Y ) ./\ Z ) ) |
| 35 | simp21 | |- ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) -> X e. B ) |
|
| 36 | simp1r | |- ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) -> P e. A ) |
|
| 37 | 1 4 23 5 | meetat2 | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) e. A \/ ( X ./\ P ) = ( 0. ` K ) ) ) |
| 38 | 15 35 36 37 | syl3anc | |- ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) -> ( ( X ./\ P ) e. A \/ ( X ./\ P ) = ( 0. ` K ) ) ) |
| 39 | 12 34 38 | mpjaodan | |- ( ( ( K e. HL /\ P e. A ) /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X ./\ P ) .<_ Z ) -> ( ( X ./\ P ) .\/ ( Y ./\ Z ) ) = ( ( ( X ./\ P ) .\/ Y ) ./\ Z ) ) |