This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | m.b | |- B = ( Base ` K ) |
|
| m.m | |- ./\ = ( meet ` K ) |
||
| m.z | |- .0. = ( 0. ` K ) |
||
| m.a | |- A = ( Atoms ` K ) |
||
| Assertion | meetat2 | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) e. A \/ ( X ./\ P ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m.b | |- B = ( Base ` K ) |
|
| 2 | m.m | |- ./\ = ( meet ` K ) |
|
| 3 | m.z | |- .0. = ( 0. ` K ) |
|
| 4 | m.a | |- A = ( Atoms ` K ) |
|
| 5 | 1 2 3 4 | meetat | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) = P \/ ( X ./\ P ) = .0. ) ) |
| 6 | eleq1a | |- ( P e. A -> ( ( X ./\ P ) = P -> ( X ./\ P ) e. A ) ) |
|
| 7 | 6 | 3ad2ant3 | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) = P -> ( X ./\ P ) e. A ) ) |
| 8 | 7 | orim1d | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( ( X ./\ P ) = P \/ ( X ./\ P ) = .0. ) -> ( ( X ./\ P ) e. A \/ ( X ./\ P ) = .0. ) ) ) |
| 9 | 5 8 | mpd | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) e. A \/ ( X ./\ P ) = .0. ) ) |