This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem chub1

Description: Hilbert lattice join is greater than or equal to its first argument. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chub1
|- ( ( A e. CH /\ B e. CH ) -> A C_ ( A vH B ) )

Proof

Step Hyp Ref Expression
1 chsh
 |-  ( A e. CH -> A e. SH )
2 chsh
 |-  ( B e. CH -> B e. SH )
3 shub1
 |-  ( ( A e. SH /\ B e. SH ) -> A C_ ( A vH B ) )
4 1 2 3 syl2an
 |-  ( ( A e. CH /\ B e. CH ) -> A C_ ( A vH B ) )