This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two Hilbert lattice elements have the dual modular pair property if the first is an atom. Theorem 7.6(c) of MaedaMaeda p. 31. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atdmd | |- ( ( A e. HAtoms /\ B e. CH ) -> A MH* B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvp | |- ( ( B e. CH /\ A e. HAtoms ) -> ( ( B i^i A ) = 0H <-> B |
|
| 2 | atelch | |- ( A e. HAtoms -> A e. CH ) |
|
| 3 | chjcom | |- ( ( B e. CH /\ A e. CH ) -> ( B vH A ) = ( A vH B ) ) |
|
| 4 | 2 3 | sylan2 | |- ( ( B e. CH /\ A e. HAtoms ) -> ( B vH A ) = ( A vH B ) ) |
| 5 | 4 | breq2d | |- ( ( B e. CH /\ A e. HAtoms ) -> ( B |
| 6 | 1 5 | bitrd | |- ( ( B e. CH /\ A e. HAtoms ) -> ( ( B i^i A ) = 0H <-> B |
| 7 | 6 | ancoms | |- ( ( A e. HAtoms /\ B e. CH ) -> ( ( B i^i A ) = 0H <-> B |
| 8 | cvdmd | |- ( ( A e. CH /\ B e. CH /\ B |
|
| 9 | 8 | 3expia | |- ( ( A e. CH /\ B e. CH ) -> ( B |
| 10 | 2 9 | sylan | |- ( ( A e. HAtoms /\ B e. CH ) -> ( B |
| 11 | 7 10 | sylbid | |- ( ( A e. HAtoms /\ B e. CH ) -> ( ( B i^i A ) = 0H -> A MH* B ) ) |
| 12 | atnssm0 | |- ( ( B e. CH /\ A e. HAtoms ) -> ( -. A C_ B <-> ( B i^i A ) = 0H ) ) |
|
| 13 | 12 | ancoms | |- ( ( A e. HAtoms /\ B e. CH ) -> ( -. A C_ B <-> ( B i^i A ) = 0H ) ) |
| 14 | 13 | con1bid | |- ( ( A e. HAtoms /\ B e. CH ) -> ( -. ( B i^i A ) = 0H <-> A C_ B ) ) |
| 15 | ssdmd1 | |- ( ( A e. CH /\ B e. CH /\ A C_ B ) -> A MH* B ) |
|
| 16 | 15 | 3expia | |- ( ( A e. CH /\ B e. CH ) -> ( A C_ B -> A MH* B ) ) |
| 17 | 2 16 | sylan | |- ( ( A e. HAtoms /\ B e. CH ) -> ( A C_ B -> A MH* B ) ) |
| 18 | 14 17 | sylbid | |- ( ( A e. HAtoms /\ B e. CH ) -> ( -. ( B i^i A ) = 0H -> A MH* B ) ) |
| 19 | 11 18 | pm2.61d | |- ( ( A e. HAtoms /\ B e. CH ) -> A MH* B ) |