This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the upper integers that start at an integer M . The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzind3.1 | |- ( j = M -> ( ph <-> ps ) ) |
|
| uzind3.2 | |- ( j = m -> ( ph <-> ch ) ) |
||
| uzind3.3 | |- ( j = ( m + 1 ) -> ( ph <-> th ) ) |
||
| uzind3.4 | |- ( j = N -> ( ph <-> ta ) ) |
||
| uzind3.5 | |- ( M e. ZZ -> ps ) |
||
| uzind3.6 | |- ( ( M e. ZZ /\ m e. { k e. ZZ | M <_ k } ) -> ( ch -> th ) ) |
||
| Assertion | uzind3 | |- ( ( M e. ZZ /\ N e. { k e. ZZ | M <_ k } ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzind3.1 | |- ( j = M -> ( ph <-> ps ) ) |
|
| 2 | uzind3.2 | |- ( j = m -> ( ph <-> ch ) ) |
|
| 3 | uzind3.3 | |- ( j = ( m + 1 ) -> ( ph <-> th ) ) |
|
| 4 | uzind3.4 | |- ( j = N -> ( ph <-> ta ) ) |
|
| 5 | uzind3.5 | |- ( M e. ZZ -> ps ) |
|
| 6 | uzind3.6 | |- ( ( M e. ZZ /\ m e. { k e. ZZ | M <_ k } ) -> ( ch -> th ) ) |
|
| 7 | breq2 | |- ( k = N -> ( M <_ k <-> M <_ N ) ) |
|
| 8 | 7 | elrab | |- ( N e. { k e. ZZ | M <_ k } <-> ( N e. ZZ /\ M <_ N ) ) |
| 9 | breq2 | |- ( k = m -> ( M <_ k <-> M <_ m ) ) |
|
| 10 | 9 | elrab | |- ( m e. { k e. ZZ | M <_ k } <-> ( m e. ZZ /\ M <_ m ) ) |
| 11 | 10 6 | sylan2br | |- ( ( M e. ZZ /\ ( m e. ZZ /\ M <_ m ) ) -> ( ch -> th ) ) |
| 12 | 11 | 3impb | |- ( ( M e. ZZ /\ m e. ZZ /\ M <_ m ) -> ( ch -> th ) ) |
| 13 | 1 2 3 4 5 12 | uzind | |- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ta ) |
| 14 | 13 | 3expb | |- ( ( M e. ZZ /\ ( N e. ZZ /\ M <_ N ) ) -> ta ) |
| 15 | 8 14 | sylan2b | |- ( ( M e. ZZ /\ N e. { k e. ZZ | M <_ k } ) -> ta ) |