This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The aleph function is one-to-one. (Contributed by NM, 3-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | aleph11 | |- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) = ( aleph ` B ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephord3 | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( aleph ` A ) C_ ( aleph ` B ) ) ) |
|
| 2 | alephord3 | |- ( ( B e. On /\ A e. On ) -> ( B C_ A <-> ( aleph ` B ) C_ ( aleph ` A ) ) ) |
|
| 3 | 2 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( B C_ A <-> ( aleph ` B ) C_ ( aleph ` A ) ) ) |
| 4 | 1 3 | anbi12d | |- ( ( A e. On /\ B e. On ) -> ( ( A C_ B /\ B C_ A ) <-> ( ( aleph ` A ) C_ ( aleph ` B ) /\ ( aleph ` B ) C_ ( aleph ` A ) ) ) ) |
| 5 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
| 6 | eqss | |- ( ( aleph ` A ) = ( aleph ` B ) <-> ( ( aleph ` A ) C_ ( aleph ` B ) /\ ( aleph ` B ) C_ ( aleph ` A ) ) ) |
|
| 7 | 4 5 6 | 3bitr4g | |- ( ( A e. On /\ B e. On ) -> ( A = B <-> ( aleph ` A ) = ( aleph ` B ) ) ) |
| 8 | 7 | bicomd | |- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) = ( aleph ` B ) <-> A = B ) ) |