This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of TakeutiZaring p. 90. (Contributed by NM, 3-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephiso | ⊢ ℵ Isom E , E ( On , { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon | ⊢ ℵ Fn On | |
| 2 | isinfcard | ⊢ ( ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) ↔ 𝑥 ∈ ran ℵ ) | |
| 3 | 2 | bicomi | ⊢ ( 𝑥 ∈ ran ℵ ↔ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) ) |
| 4 | 3 | eqabi | ⊢ ran ℵ = { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } |
| 5 | df-fo | ⊢ ( ℵ : On –onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ↔ ( ℵ Fn On ∧ ran ℵ = { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ) ) | |
| 6 | 1 4 5 | mpbir2an | ⊢ ℵ : On –onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } |
| 7 | fof | ⊢ ( ℵ : On –onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } → ℵ : On ⟶ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ) | |
| 8 | 6 7 | ax-mp | ⊢ ℵ : On ⟶ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } |
| 9 | aleph11 | ⊢ ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( ( ℵ ‘ 𝑦 ) = ( ℵ ‘ 𝑧 ) ↔ 𝑦 = 𝑧 ) ) | |
| 10 | 9 | biimpd | ⊢ ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( ( ℵ ‘ 𝑦 ) = ( ℵ ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 11 | 10 | rgen2 | ⊢ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( ( ℵ ‘ 𝑦 ) = ( ℵ ‘ 𝑧 ) → 𝑦 = 𝑧 ) |
| 12 | dff13 | ⊢ ( ℵ : On –1-1→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ↔ ( ℵ : On ⟶ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ∧ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( ( ℵ ‘ 𝑦 ) = ( ℵ ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 13 | 8 11 12 | mpbir2an | ⊢ ℵ : On –1-1→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } |
| 14 | df-f1o | ⊢ ( ℵ : On –1-1-onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ↔ ( ℵ : On –1-1→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ∧ ℵ : On –onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ) ) | |
| 15 | 13 6 14 | mpbir2an | ⊢ ℵ : On –1-1-onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } |
| 16 | alephord2 | ⊢ ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑦 ∈ 𝑧 ↔ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑧 ) ) ) | |
| 17 | epel | ⊢ ( 𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧 ) | |
| 18 | fvex | ⊢ ( ℵ ‘ 𝑧 ) ∈ V | |
| 19 | 18 | epeli | ⊢ ( ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ↔ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑧 ) ) |
| 20 | 16 17 19 | 3bitr4g | ⊢ ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ) ) |
| 21 | 20 | rgen2 | ⊢ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ) |
| 22 | df-isom | ⊢ ( ℵ Isom E , E ( On , { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ) ↔ ( ℵ : On –1-1-onto→ { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ∧ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 E 𝑧 ↔ ( ℵ ‘ 𝑦 ) E ( ℵ ‘ 𝑧 ) ) ) ) | |
| 23 | 15 21 22 | mpbir2an | ⊢ ℵ Isom E , E ( On , { 𝑥 ∣ ( ω ⊆ 𝑥 ∧ ( card ‘ 𝑥 ) = 𝑥 ) } ) |