This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed union of a set of cardinals is a cardinal. (Contributed by NM, 3-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardiun | |- ( A e. V -> ( A. x e. A ( card ` B ) = B -> ( card ` U_ x e. A B ) = U_ x e. A B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abrexexg | |- ( A e. V -> { z | E. x e. A z = ( card ` B ) } e. _V ) |
|
| 2 | vex | |- y e. _V |
|
| 3 | eqeq1 | |- ( z = y -> ( z = ( card ` B ) <-> y = ( card ` B ) ) ) |
|
| 4 | 3 | rexbidv | |- ( z = y -> ( E. x e. A z = ( card ` B ) <-> E. x e. A y = ( card ` B ) ) ) |
| 5 | 2 4 | elab | |- ( y e. { z | E. x e. A z = ( card ` B ) } <-> E. x e. A y = ( card ` B ) ) |
| 6 | cardidm | |- ( card ` ( card ` B ) ) = ( card ` B ) |
|
| 7 | fveq2 | |- ( y = ( card ` B ) -> ( card ` y ) = ( card ` ( card ` B ) ) ) |
|
| 8 | id | |- ( y = ( card ` B ) -> y = ( card ` B ) ) |
|
| 9 | 6 7 8 | 3eqtr4a | |- ( y = ( card ` B ) -> ( card ` y ) = y ) |
| 10 | 9 | rexlimivw | |- ( E. x e. A y = ( card ` B ) -> ( card ` y ) = y ) |
| 11 | 5 10 | sylbi | |- ( y e. { z | E. x e. A z = ( card ` B ) } -> ( card ` y ) = y ) |
| 12 | 11 | rgen | |- A. y e. { z | E. x e. A z = ( card ` B ) } ( card ` y ) = y |
| 13 | carduni | |- ( { z | E. x e. A z = ( card ` B ) } e. _V -> ( A. y e. { z | E. x e. A z = ( card ` B ) } ( card ` y ) = y -> ( card ` U. { z | E. x e. A z = ( card ` B ) } ) = U. { z | E. x e. A z = ( card ` B ) } ) ) |
|
| 14 | 1 12 13 | mpisyl | |- ( A e. V -> ( card ` U. { z | E. x e. A z = ( card ` B ) } ) = U. { z | E. x e. A z = ( card ` B ) } ) |
| 15 | fvex | |- ( card ` B ) e. _V |
|
| 16 | 15 | dfiun2 | |- U_ x e. A ( card ` B ) = U. { z | E. x e. A z = ( card ` B ) } |
| 17 | 16 | fveq2i | |- ( card ` U_ x e. A ( card ` B ) ) = ( card ` U. { z | E. x e. A z = ( card ` B ) } ) |
| 18 | 14 17 16 | 3eqtr4g | |- ( A e. V -> ( card ` U_ x e. A ( card ` B ) ) = U_ x e. A ( card ` B ) ) |
| 19 | 18 | adantr | |- ( ( A e. V /\ A. x e. A ( card ` B ) = B ) -> ( card ` U_ x e. A ( card ` B ) ) = U_ x e. A ( card ` B ) ) |
| 20 | iuneq2 | |- ( A. x e. A ( card ` B ) = B -> U_ x e. A ( card ` B ) = U_ x e. A B ) |
|
| 21 | 20 | adantl | |- ( ( A e. V /\ A. x e. A ( card ` B ) = B ) -> U_ x e. A ( card ` B ) = U_ x e. A B ) |
| 22 | 21 | fveq2d | |- ( ( A e. V /\ A. x e. A ( card ` B ) = B ) -> ( card ` U_ x e. A ( card ` B ) ) = ( card ` U_ x e. A B ) ) |
| 23 | 19 22 21 | 3eqtr3d | |- ( ( A e. V /\ A. x e. A ( card ` B ) = B ) -> ( card ` U_ x e. A B ) = U_ x e. A B ) |
| 24 | 23 | ex | |- ( A e. V -> ( A. x e. A ( card ` B ) = B -> ( card ` U_ x e. A B ) = U_ x e. A B ) ) |