This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006) (Proof shortened by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjvalval | |- ( ( T e. dom adjh /\ A e. ~H ) -> ( ( adjh ` T ) ` A ) = ( iota_ w e. ~H A. x e. ~H ( ( T ` x ) .ih A ) = ( x .ih w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adjcl | |- ( ( T e. dom adjh /\ A e. ~H ) -> ( ( adjh ` T ) ` A ) e. ~H ) |
|
| 2 | eqcom | |- ( ( ( T ` x ) .ih A ) = ( x .ih w ) <-> ( x .ih w ) = ( ( T ` x ) .ih A ) ) |
|
| 3 | adj2 | |- ( ( T e. dom adjh /\ x e. ~H /\ A e. ~H ) -> ( ( T ` x ) .ih A ) = ( x .ih ( ( adjh ` T ) ` A ) ) ) |
|
| 4 | 3 | 3com23 | |- ( ( T e. dom adjh /\ A e. ~H /\ x e. ~H ) -> ( ( T ` x ) .ih A ) = ( x .ih ( ( adjh ` T ) ` A ) ) ) |
| 5 | 4 | 3expa | |- ( ( ( T e. dom adjh /\ A e. ~H ) /\ x e. ~H ) -> ( ( T ` x ) .ih A ) = ( x .ih ( ( adjh ` T ) ` A ) ) ) |
| 6 | 5 | eqeq2d | |- ( ( ( T e. dom adjh /\ A e. ~H ) /\ x e. ~H ) -> ( ( x .ih w ) = ( ( T ` x ) .ih A ) <-> ( x .ih w ) = ( x .ih ( ( adjh ` T ) ` A ) ) ) ) |
| 7 | 2 6 | bitrid | |- ( ( ( T e. dom adjh /\ A e. ~H ) /\ x e. ~H ) -> ( ( ( T ` x ) .ih A ) = ( x .ih w ) <-> ( x .ih w ) = ( x .ih ( ( adjh ` T ) ` A ) ) ) ) |
| 8 | 7 | ralbidva | |- ( ( T e. dom adjh /\ A e. ~H ) -> ( A. x e. ~H ( ( T ` x ) .ih A ) = ( x .ih w ) <-> A. x e. ~H ( x .ih w ) = ( x .ih ( ( adjh ` T ) ` A ) ) ) ) |
| 9 | 8 | adantr | |- ( ( ( T e. dom adjh /\ A e. ~H ) /\ w e. ~H ) -> ( A. x e. ~H ( ( T ` x ) .ih A ) = ( x .ih w ) <-> A. x e. ~H ( x .ih w ) = ( x .ih ( ( adjh ` T ) ` A ) ) ) ) |
| 10 | simpr | |- ( ( ( T e. dom adjh /\ A e. ~H ) /\ w e. ~H ) -> w e. ~H ) |
|
| 11 | 1 | adantr | |- ( ( ( T e. dom adjh /\ A e. ~H ) /\ w e. ~H ) -> ( ( adjh ` T ) ` A ) e. ~H ) |
| 12 | hial2eq2 | |- ( ( w e. ~H /\ ( ( adjh ` T ) ` A ) e. ~H ) -> ( A. x e. ~H ( x .ih w ) = ( x .ih ( ( adjh ` T ) ` A ) ) <-> w = ( ( adjh ` T ) ` A ) ) ) |
|
| 13 | 10 11 12 | syl2anc | |- ( ( ( T e. dom adjh /\ A e. ~H ) /\ w e. ~H ) -> ( A. x e. ~H ( x .ih w ) = ( x .ih ( ( adjh ` T ) ` A ) ) <-> w = ( ( adjh ` T ) ` A ) ) ) |
| 14 | 9 13 | bitrd | |- ( ( ( T e. dom adjh /\ A e. ~H ) /\ w e. ~H ) -> ( A. x e. ~H ( ( T ` x ) .ih A ) = ( x .ih w ) <-> w = ( ( adjh ` T ) ` A ) ) ) |
| 15 | 1 14 | riota5 | |- ( ( T e. dom adjh /\ A e. ~H ) -> ( iota_ w e. ~H A. x e. ~H ( ( T ` x ) .ih A ) = ( x .ih w ) ) = ( ( adjh ` T ) ` A ) ) |
| 16 | 15 | eqcomd | |- ( ( T e. dom adjh /\ A e. ~H ) -> ( ( adjh ` T ) ` A ) = ( iota_ w e. ~H A. x e. ~H ( ( T ` x ) .ih A ) = ( x .ih w ) ) ) |