This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S9) of Beran p. 95. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoeq1 | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( A. x e. ~H A. y e. ~H ( ( S ` x ) .ih y ) = ( ( T ` x ) .ih y ) <-> S = T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm | |- ( ( S : ~H --> ~H /\ x e. ~H ) -> ( S ` x ) e. ~H ) |
|
| 2 | ffvelcdm | |- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
|
| 3 | hial2eq | |- ( ( ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( A. y e. ~H ( ( S ` x ) .ih y ) = ( ( T ` x ) .ih y ) <-> ( S ` x ) = ( T ` x ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( ( S : ~H --> ~H /\ x e. ~H ) /\ ( T : ~H --> ~H /\ x e. ~H ) ) -> ( A. y e. ~H ( ( S ` x ) .ih y ) = ( ( T ` x ) .ih y ) <-> ( S ` x ) = ( T ` x ) ) ) |
| 5 | 4 | anandirs | |- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( A. y e. ~H ( ( S ` x ) .ih y ) = ( ( T ` x ) .ih y ) <-> ( S ` x ) = ( T ` x ) ) ) |
| 6 | 5 | ralbidva | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( A. x e. ~H A. y e. ~H ( ( S ` x ) .ih y ) = ( ( T ` x ) .ih y ) <-> A. x e. ~H ( S ` x ) = ( T ` x ) ) ) |
| 7 | ffn | |- ( S : ~H --> ~H -> S Fn ~H ) |
|
| 8 | ffn | |- ( T : ~H --> ~H -> T Fn ~H ) |
|
| 9 | eqfnfv | |- ( ( S Fn ~H /\ T Fn ~H ) -> ( S = T <-> A. x e. ~H ( S ` x ) = ( T ` x ) ) ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S = T <-> A. x e. ~H ( S ` x ) = ( T ` x ) ) ) |
| 11 | 6 10 | bitr4d | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( A. x e. ~H A. y e. ~H ( ( S ` x ) .ih y ) = ( ( T ` x ) .ih y ) <-> S = T ) ) |