This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adj2 | |- ( ( T e. dom adjh /\ A e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih B ) = ( A .ih ( ( adjh ` T ) ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adj1 | |- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( B .ih ( T ` A ) ) = ( ( ( adjh ` T ) ` B ) .ih A ) ) |
|
| 2 | simp2 | |- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> B e. ~H ) |
|
| 3 | dmadjop | |- ( T e. dom adjh -> T : ~H --> ~H ) |
|
| 4 | 3 | ffvelcdmda | |- ( ( T e. dom adjh /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
| 5 | 4 | 3adant2 | |- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
| 6 | ax-his1 | |- ( ( B e. ~H /\ ( T ` A ) e. ~H ) -> ( B .ih ( T ` A ) ) = ( * ` ( ( T ` A ) .ih B ) ) ) |
|
| 7 | 2 5 6 | syl2anc | |- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( B .ih ( T ` A ) ) = ( * ` ( ( T ` A ) .ih B ) ) ) |
| 8 | adjcl | |- ( ( T e. dom adjh /\ B e. ~H ) -> ( ( adjh ` T ) ` B ) e. ~H ) |
|
| 9 | 8 | 3adant3 | |- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( ( adjh ` T ) ` B ) e. ~H ) |
| 10 | simp3 | |- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> A e. ~H ) |
|
| 11 | ax-his1 | |- ( ( ( ( adjh ` T ) ` B ) e. ~H /\ A e. ~H ) -> ( ( ( adjh ` T ) ` B ) .ih A ) = ( * ` ( A .ih ( ( adjh ` T ) ` B ) ) ) ) |
|
| 12 | 9 10 11 | syl2anc | |- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( ( ( adjh ` T ) ` B ) .ih A ) = ( * ` ( A .ih ( ( adjh ` T ) ` B ) ) ) ) |
| 13 | 1 7 12 | 3eqtr3d | |- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( * ` ( ( T ` A ) .ih B ) ) = ( * ` ( A .ih ( ( adjh ` T ) ` B ) ) ) ) |
| 14 | hicl | |- ( ( ( T ` A ) e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih B ) e. CC ) |
|
| 15 | 5 2 14 | syl2anc | |- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( ( T ` A ) .ih B ) e. CC ) |
| 16 | hicl | |- ( ( A e. ~H /\ ( ( adjh ` T ) ` B ) e. ~H ) -> ( A .ih ( ( adjh ` T ) ` B ) ) e. CC ) |
|
| 17 | 10 9 16 | syl2anc | |- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( A .ih ( ( adjh ` T ) ` B ) ) e. CC ) |
| 18 | cj11 | |- ( ( ( ( T ` A ) .ih B ) e. CC /\ ( A .ih ( ( adjh ` T ) ` B ) ) e. CC ) -> ( ( * ` ( ( T ` A ) .ih B ) ) = ( * ` ( A .ih ( ( adjh ` T ) ` B ) ) ) <-> ( ( T ` A ) .ih B ) = ( A .ih ( ( adjh ` T ) ` B ) ) ) ) |
|
| 19 | 15 17 18 | syl2anc | |- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( ( * ` ( ( T ` A ) .ih B ) ) = ( * ` ( A .ih ( ( adjh ` T ) ` B ) ) ) <-> ( ( T ` A ) .ih B ) = ( A .ih ( ( adjh ` T ) ` B ) ) ) ) |
| 20 | 13 19 | mpbid | |- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( ( T ` A ) .ih B ) = ( A .ih ( ( adjh ` T ) ` B ) ) ) |
| 21 | 20 | 3com23 | |- ( ( T e. dom adjh /\ A e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih B ) = ( A .ih ( ( adjh ` T ) ` B ) ) ) |