This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addsub4 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) − ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 − 𝐶 ) + ( 𝐵 − 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐴 ∈ ℂ ) | |
| 2 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐵 ∈ ℂ ) | |
| 3 | simprl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐶 ∈ ℂ ) | |
| 4 | addsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( ( 𝐴 − 𝐶 ) + 𝐵 ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( ( 𝐴 − 𝐶 ) + 𝐵 ) ) |
| 6 | 5 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) − 𝐷 ) = ( ( ( 𝐴 − 𝐶 ) + 𝐵 ) − 𝐷 ) ) |
| 7 | 1 2 | addcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 8 | simprr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐷 ∈ ℂ ) | |
| 9 | subsub4 | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) − 𝐷 ) = ( ( 𝐴 + 𝐵 ) − ( 𝐶 + 𝐷 ) ) ) | |
| 10 | 7 3 8 9 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) − 𝐷 ) = ( ( 𝐴 + 𝐵 ) − ( 𝐶 + 𝐷 ) ) ) |
| 11 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐶 ) ∈ ℂ ) | |
| 12 | 11 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 − 𝐶 ) ∈ ℂ ) |
| 13 | addsubass | ⊢ ( ( ( 𝐴 − 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 𝐴 − 𝐶 ) + 𝐵 ) − 𝐷 ) = ( ( 𝐴 − 𝐶 ) + ( 𝐵 − 𝐷 ) ) ) | |
| 14 | 12 2 8 13 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 − 𝐶 ) + 𝐵 ) − 𝐷 ) = ( ( 𝐴 − 𝐶 ) + ( 𝐵 − 𝐷 ) ) ) |
| 15 | 6 10 14 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) − ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 − 𝐶 ) + ( 𝐵 − 𝐷 ) ) ) |