This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is the union of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unifpw | |- U. ( ~P A i^i Fin ) = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | |- ( ~P A i^i Fin ) C_ ~P A |
|
| 2 | 1 | unissi | |- U. ( ~P A i^i Fin ) C_ U. ~P A |
| 3 | unipw | |- U. ~P A = A |
|
| 4 | 2 3 | sseqtri | |- U. ( ~P A i^i Fin ) C_ A |
| 5 | 4 | sseli | |- ( a e. U. ( ~P A i^i Fin ) -> a e. A ) |
| 6 | snelpwi | |- ( a e. A -> { a } e. ~P A ) |
|
| 7 | snfi | |- { a } e. Fin |
|
| 8 | 7 | a1i | |- ( a e. A -> { a } e. Fin ) |
| 9 | 6 8 | elind | |- ( a e. A -> { a } e. ( ~P A i^i Fin ) ) |
| 10 | elssuni | |- ( { a } e. ( ~P A i^i Fin ) -> { a } C_ U. ( ~P A i^i Fin ) ) |
|
| 11 | 9 10 | syl | |- ( a e. A -> { a } C_ U. ( ~P A i^i Fin ) ) |
| 12 | snidg | |- ( a e. A -> a e. { a } ) |
|
| 13 | 11 12 | sseldd | |- ( a e. A -> a e. U. ( ~P A i^i Fin ) ) |
| 14 | 5 13 | impbii | |- ( a e. U. ( ~P A i^i Fin ) <-> a e. A ) |
| 15 | 14 | eqriv | |- U. ( ~P A i^i Fin ) = A |