This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an algebraic closure system, if two independent sets have equal closure and one is infinite, then they are equinumerous. This is proven by using acsdomd twice with acsinfd . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | acsinfdimd.1 | |- ( ph -> A e. ( ACS ` X ) ) |
|
| acsinfdimd.2 | |- N = ( mrCls ` A ) |
||
| acsinfdimd.3 | |- I = ( mrInd ` A ) |
||
| acsinfdimd.4 | |- ( ph -> S e. I ) |
||
| acsinfdimd.5 | |- ( ph -> T e. I ) |
||
| acsinfdimd.6 | |- ( ph -> ( N ` S ) = ( N ` T ) ) |
||
| acsinfdimd.7 | |- ( ph -> -. S e. Fin ) |
||
| Assertion | acsinfdimd | |- ( ph -> S ~~ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsinfdimd.1 | |- ( ph -> A e. ( ACS ` X ) ) |
|
| 2 | acsinfdimd.2 | |- N = ( mrCls ` A ) |
|
| 3 | acsinfdimd.3 | |- I = ( mrInd ` A ) |
|
| 4 | acsinfdimd.4 | |- ( ph -> S e. I ) |
|
| 5 | acsinfdimd.5 | |- ( ph -> T e. I ) |
|
| 6 | acsinfdimd.6 | |- ( ph -> ( N ` S ) = ( N ` T ) ) |
|
| 7 | acsinfdimd.7 | |- ( ph -> -. S e. Fin ) |
|
| 8 | 1 | acsmred | |- ( ph -> A e. ( Moore ` X ) ) |
| 9 | 3 8 5 | mrissd | |- ( ph -> T C_ X ) |
| 10 | 1 2 3 4 9 6 7 | acsdomd | |- ( ph -> S ~<_ T ) |
| 11 | 3 8 4 | mrissd | |- ( ph -> S C_ X ) |
| 12 | 6 | eqcomd | |- ( ph -> ( N ` T ) = ( N ` S ) ) |
| 13 | 1 2 3 4 9 6 7 | acsinfd | |- ( ph -> -. T e. Fin ) |
| 14 | 1 2 3 5 11 12 13 | acsdomd | |- ( ph -> T ~<_ S ) |
| 15 | sbth | |- ( ( S ~<_ T /\ T ~<_ S ) -> S ~~ T ) |
|
| 16 | 10 14 15 | syl2anc | |- ( ph -> S ~~ T ) |