This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unirnfdomd.1 | |- ( ph -> F : T --> Fin ) |
|
| unirnfdomd.2 | |- ( ph -> -. T e. Fin ) |
||
| unirnfdomd.3 | |- ( ph -> T e. V ) |
||
| Assertion | unirnfdomd | |- ( ph -> U. ran F ~<_ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unirnfdomd.1 | |- ( ph -> F : T --> Fin ) |
|
| 2 | unirnfdomd.2 | |- ( ph -> -. T e. Fin ) |
|
| 3 | unirnfdomd.3 | |- ( ph -> T e. V ) |
|
| 4 | 1 | ffnd | |- ( ph -> F Fn T ) |
| 5 | fnex | |- ( ( F Fn T /\ T e. V ) -> F e. _V ) |
|
| 6 | 4 3 5 | syl2anc | |- ( ph -> F e. _V ) |
| 7 | rnexg | |- ( F e. _V -> ran F e. _V ) |
|
| 8 | 6 7 | syl | |- ( ph -> ran F e. _V ) |
| 9 | frn | |- ( F : T --> Fin -> ran F C_ Fin ) |
|
| 10 | dfss3 | |- ( ran F C_ Fin <-> A. x e. ran F x e. Fin ) |
|
| 11 | 9 10 | sylib | |- ( F : T --> Fin -> A. x e. ran F x e. Fin ) |
| 12 | fict | |- ( x e. Fin -> x ~<_ _om ) |
|
| 13 | 12 | ralimi | |- ( A. x e. ran F x e. Fin -> A. x e. ran F x ~<_ _om ) |
| 14 | 1 11 13 | 3syl | |- ( ph -> A. x e. ran F x ~<_ _om ) |
| 15 | unidom | |- ( ( ran F e. _V /\ A. x e. ran F x ~<_ _om ) -> U. ran F ~<_ ( ran F X. _om ) ) |
|
| 16 | 8 14 15 | syl2anc | |- ( ph -> U. ran F ~<_ ( ran F X. _om ) ) |
| 17 | fnrndomg | |- ( T e. V -> ( F Fn T -> ran F ~<_ T ) ) |
|
| 18 | 3 4 17 | sylc | |- ( ph -> ran F ~<_ T ) |
| 19 | omex | |- _om e. _V |
|
| 20 | 19 | xpdom1 | |- ( ran F ~<_ T -> ( ran F X. _om ) ~<_ ( T X. _om ) ) |
| 21 | 18 20 | syl | |- ( ph -> ( ran F X. _om ) ~<_ ( T X. _om ) ) |
| 22 | domtr | |- ( ( U. ran F ~<_ ( ran F X. _om ) /\ ( ran F X. _om ) ~<_ ( T X. _om ) ) -> U. ran F ~<_ ( T X. _om ) ) |
|
| 23 | 16 21 22 | syl2anc | |- ( ph -> U. ran F ~<_ ( T X. _om ) ) |
| 24 | infinf | |- ( T e. V -> ( -. T e. Fin <-> _om ~<_ T ) ) |
|
| 25 | 3 24 | syl | |- ( ph -> ( -. T e. Fin <-> _om ~<_ T ) ) |
| 26 | 2 25 | mpbid | |- ( ph -> _om ~<_ T ) |
| 27 | xpdom2g | |- ( ( T e. V /\ _om ~<_ T ) -> ( T X. _om ) ~<_ ( T X. T ) ) |
|
| 28 | 3 26 27 | syl2anc | |- ( ph -> ( T X. _om ) ~<_ ( T X. T ) ) |
| 29 | domtr | |- ( ( U. ran F ~<_ ( T X. _om ) /\ ( T X. _om ) ~<_ ( T X. T ) ) -> U. ran F ~<_ ( T X. T ) ) |
|
| 30 | 23 28 29 | syl2anc | |- ( ph -> U. ran F ~<_ ( T X. T ) ) |
| 31 | infxpidm | |- ( _om ~<_ T -> ( T X. T ) ~~ T ) |
|
| 32 | 26 31 | syl | |- ( ph -> ( T X. T ) ~~ T ) |
| 33 | domentr | |- ( ( U. ran F ~<_ ( T X. T ) /\ ( T X. T ) ~~ T ) -> U. ran F ~<_ T ) |
|
| 34 | 30 32 33 | syl2anc | |- ( ph -> U. ran F ~<_ T ) |