This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at 0. (Contributed by AV, 2-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackval0 | |- ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ack | |- Ack = seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) |
|
| 2 | 1 | fveq1i | |- ( Ack ` 0 ) = ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` 0 ) |
| 3 | 0z | |- 0 e. ZZ |
|
| 4 | seq1 | |- ( 0 e. ZZ -> ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` 0 ) = ( ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ` 0 ) ) |
|
| 5 | 3 4 | ax-mp | |- ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` 0 ) = ( ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ` 0 ) |
| 6 | 0nn0 | |- 0 e. NN0 |
|
| 7 | iftrue | |- ( i = 0 -> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) = ( n e. NN0 |-> ( n + 1 ) ) ) |
|
| 8 | eqid | |- ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) = ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) |
|
| 9 | nn0ex | |- NN0 e. _V |
|
| 10 | 9 | mptex | |- ( n e. NN0 |-> ( n + 1 ) ) e. _V |
| 11 | 7 8 10 | fvmpt | |- ( 0 e. NN0 -> ( ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) ) |
| 12 | 6 11 | ax-mp | |- ( ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) |
| 13 | 2 5 12 | 3eqtri | |- ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) |