This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 9-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opabss | |- { <. x , y >. | x R y } C_ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opab | |- { <. x , y >. | x R y } = { z | E. x E. y ( z = <. x , y >. /\ x R y ) } |
|
| 2 | df-br | |- ( x R y <-> <. x , y >. e. R ) |
|
| 3 | eleq1 | |- ( z = <. x , y >. -> ( z e. R <-> <. x , y >. e. R ) ) |
|
| 4 | 3 | biimpar | |- ( ( z = <. x , y >. /\ <. x , y >. e. R ) -> z e. R ) |
| 5 | 2 4 | sylan2b | |- ( ( z = <. x , y >. /\ x R y ) -> z e. R ) |
| 6 | 5 | exlimivv | |- ( E. x E. y ( z = <. x , y >. /\ x R y ) -> z e. R ) |
| 7 | 6 | abssi | |- { z | E. x E. y ( z = <. x , y >. /\ x R y ) } C_ R |
| 8 | 1 7 | eqsstri | |- { <. x , y >. | x R y } C_ R |