This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 10-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lesubadd2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) <_ C <-> A <_ ( B + C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lesubadd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) <_ C <-> A <_ ( C + B ) ) ) |
|
| 2 | simp2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
|
| 3 | 2 | recnd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
| 4 | simp3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
|
| 5 | 4 | recnd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
| 6 | 3 5 | addcomd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B + C ) = ( C + B ) ) |
| 7 | 6 | breq2d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ ( B + C ) <-> A <_ ( C + B ) ) ) |
| 8 | 1 7 | bitr4d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) <_ C <-> A <_ ( B + C ) ) ) |