This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a symmetric closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elicc4abs | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( ( A - B ) [,] ( A + B ) ) <-> ( abs ` ( C - A ) ) <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubcl | |- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A - B ) e. RR ) |
| 3 | 2 | rexrd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A - B ) e. RR* ) |
| 4 | readdcl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
|
| 5 | 4 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + B ) e. RR ) |
| 6 | 5 | rexrd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + B ) e. RR* ) |
| 7 | rexr | |- ( C e. RR -> C e. RR* ) |
|
| 8 | 7 | 3ad2ant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR* ) |
| 9 | elicc4 | |- ( ( ( A - B ) e. RR* /\ ( A + B ) e. RR* /\ C e. RR* ) -> ( C e. ( ( A - B ) [,] ( A + B ) ) <-> ( ( A - B ) <_ C /\ C <_ ( A + B ) ) ) ) |
|
| 10 | 3 6 8 9 | syl3anc | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( ( A - B ) [,] ( A + B ) ) <-> ( ( A - B ) <_ C /\ C <_ ( A + B ) ) ) ) |
| 11 | absdifle | |- ( ( C e. RR /\ A e. RR /\ B e. RR ) -> ( ( abs ` ( C - A ) ) <_ B <-> ( ( A - B ) <_ C /\ C <_ ( A + B ) ) ) ) |
|
| 12 | 11 | 3coml | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( abs ` ( C - A ) ) <_ B <-> ( ( A - B ) <_ C /\ C <_ ( A + B ) ) ) ) |
| 13 | 10 12 | bitr4d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( ( A - B ) [,] ( A + B ) ) <-> ( abs ` ( C - A ) ) <_ B ) ) |