This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An absolutely convergent series is convergent. (Contributed by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abscvgcvg.1 | ||
| abscvgcvg.2 | |||
| abscvgcvg.3 | |||
| abscvgcvg.4 | |||
| abscvgcvg.5 | |||
| Assertion | abscvgcvg |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscvgcvg.1 | ||
| 2 | abscvgcvg.2 | ||
| 3 | abscvgcvg.3 | ||
| 4 | abscvgcvg.4 | ||
| 5 | abscvgcvg.5 | ||
| 6 | uzid | ||
| 7 | 2 6 | syl | |
| 8 | 7 1 | eleqtrrdi | |
| 9 | 4 | abscld | |
| 10 | 3 9 | eqeltrd | |
| 11 | 1red | ||
| 12 | 1 | eleq2i | |
| 13 | 3 | eqcomd | |
| 14 | 9 13 | eqled | |
| 15 | 10 | recnd | |
| 16 | 15 | mullidd | |
| 17 | 14 16 | breqtrrd | |
| 18 | 12 17 | sylan2br | |
| 19 | 1 8 10 4 5 11 18 | cvgcmpce |