This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference of absolute values. (Contributed by Mario Carneiro, 14-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abs2dif2 | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
| 2 | abstri | |- ( ( A e. CC /\ -u B e. CC ) -> ( abs ` ( A + -u B ) ) <_ ( ( abs ` A ) + ( abs ` -u B ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A + -u B ) ) <_ ( ( abs ` A ) + ( abs ` -u B ) ) ) |
| 4 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 5 | 4 | fveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A + -u B ) ) = ( abs ` ( A - B ) ) ) |
| 6 | absneg | |- ( B e. CC -> ( abs ` -u B ) = ( abs ` B ) ) |
|
| 7 | 6 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` -u B ) = ( abs ` B ) ) |
| 8 | 7 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) + ( abs ` -u B ) ) = ( ( abs ` A ) + ( abs ` B ) ) ) |
| 9 | 3 5 8 | 3brtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) ) |