This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abs2difabs | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( ( abs ` A ) - ( abs ` B ) ) ) <_ ( abs ` ( A - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abs2dif | |- ( ( B e. CC /\ A e. CC ) -> ( ( abs ` B ) - ( abs ` A ) ) <_ ( abs ` ( B - A ) ) ) |
|
| 2 | 1 | ancoms | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` B ) - ( abs ` A ) ) <_ ( abs ` ( B - A ) ) ) |
| 3 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 4 | 3 | recnd | |- ( A e. CC -> ( abs ` A ) e. CC ) |
| 5 | abscl | |- ( B e. CC -> ( abs ` B ) e. RR ) |
|
| 6 | 5 | recnd | |- ( B e. CC -> ( abs ` B ) e. CC ) |
| 7 | negsubdi2 | |- ( ( ( abs ` A ) e. CC /\ ( abs ` B ) e. CC ) -> -u ( ( abs ` A ) - ( abs ` B ) ) = ( ( abs ` B ) - ( abs ` A ) ) ) |
|
| 8 | 4 6 7 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> -u ( ( abs ` A ) - ( abs ` B ) ) = ( ( abs ` B ) - ( abs ` A ) ) ) |
| 9 | abssub | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - B ) ) = ( abs ` ( B - A ) ) ) |
|
| 10 | 2 8 9 | 3brtr4d | |- ( ( A e. CC /\ B e. CC ) -> -u ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) ) |
| 11 | abs2dif | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) ) |
|
| 12 | resubcl | |- ( ( ( abs ` A ) e. RR /\ ( abs ` B ) e. RR ) -> ( ( abs ` A ) - ( abs ` B ) ) e. RR ) |
|
| 13 | 3 5 12 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) - ( abs ` B ) ) e. RR ) |
| 14 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 15 | abscl | |- ( ( A - B ) e. CC -> ( abs ` ( A - B ) ) e. RR ) |
|
| 16 | 14 15 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - B ) ) e. RR ) |
| 17 | absle | |- ( ( ( ( abs ` A ) - ( abs ` B ) ) e. RR /\ ( abs ` ( A - B ) ) e. RR ) -> ( ( abs ` ( ( abs ` A ) - ( abs ` B ) ) ) <_ ( abs ` ( A - B ) ) <-> ( -u ( abs ` ( A - B ) ) <_ ( ( abs ` A ) - ( abs ` B ) ) /\ ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) ) ) ) |
|
| 18 | 13 16 17 | syl2anc | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( ( abs ` A ) - ( abs ` B ) ) ) <_ ( abs ` ( A - B ) ) <-> ( -u ( abs ` ( A - B ) ) <_ ( ( abs ` A ) - ( abs ` B ) ) /\ ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) ) ) ) |
| 19 | lenegcon1 | |- ( ( ( ( abs ` A ) - ( abs ` B ) ) e. RR /\ ( abs ` ( A - B ) ) e. RR ) -> ( -u ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) <-> -u ( abs ` ( A - B ) ) <_ ( ( abs ` A ) - ( abs ` B ) ) ) ) |
|
| 20 | 13 16 19 | syl2anc | |- ( ( A e. CC /\ B e. CC ) -> ( -u ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) <-> -u ( abs ` ( A - B ) ) <_ ( ( abs ` A ) - ( abs ` B ) ) ) ) |
| 21 | 20 | anbi1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( -u ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) /\ ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) ) <-> ( -u ( abs ` ( A - B ) ) <_ ( ( abs ` A ) - ( abs ` B ) ) /\ ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) ) ) ) |
| 22 | 18 21 | bitr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( ( abs ` A ) - ( abs ` B ) ) ) <_ ( abs ` ( A - B ) ) <-> ( -u ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) /\ ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) ) ) ) |
| 23 | 10 11 22 | mpbir2and | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( ( abs ` A ) - ( abs ` B ) ) ) <_ ( abs ` ( A - B ) ) ) |